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PREFACE.

NATURE AND PURPOSE OF THE REPORT

From 1950 to l965 the United States of America was

engaged in.an active investigation and reform of its school

mathematics curricula. Most of this activity was carried

on within traditional curriculum framework, that is,

teaching arithmetic, algebra, and geometry as self-

contained blocks of mathematical knowledge. By initiating

an early start (in the 7
th

or 8
th

grades) of the traditional

sequence of high school courses, the more able students

were enabled to study calculus during the last year of

secondary school instruction.

By 1960 however it had become evident that the tra-

ditional separation of mathematics study into the several

isolated branches was no longer indicative of its nature

or its uses in contemporary society. Today algebra has

become a subject based on structures and their realizations.

Geometry, and its newer extensions, has now become a study

of various types of spaces and much the teaching of ordinary

synthetic Euclidean geometry is of little subsequent use.

The newer concepts of sets, relatfons, functions and

operatioas have become basic to all of the traditional

branches. Probability. str:tistics, numerical computation.



computers and mini-calculators, all yield a quite different

aspect to the treatm2nt of problem solving, applications.

and modelling. Moreover, placed in a contemporary setting,

the lmport9nt content of the traditional branches is

interlocked through fundamental structures that have

become the backbone of q11 mathematics. We now recognize

the fact that we must teach this contemporary conception

of mathematics if our students' knowledge is not to be

anachronistic when they enter adult society.

The need to reorganize the mathematics of the

traditional separated branches into a unified single

study was recognized by most European countries as early

as 1960. How to accomplish this reorganization in actual

classroom teaching was then unknown and in the first

attempts mistakes w3re made. But by 1965 some definite

procedures and desirable goals had sufficiently matured

to indicate a type of unified secondary school mathematics

that could be both possible and worthy of attainment.

This awareness gave rise to a proposed study to create

a unified curriculum, educate teachers in its content,

pedagogy and goals and to experiment with selected students

in New York suburban secondary schools. The proposal was

accepted and financed first by the Federal Office of

Educatjon from 195 to 1959, and then by the National

ficience Foundation (1969-1q76).
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This report is in a sense a historical one. First

there is a highlightint7, of significant events from 1800

to 1950 in the field of creative mathematics that led to

the contemporary view of the nature of mathematics. This

review is followed by a discussion of significant movements

in curricula reform sponsored by international organizations,

and persons, which contributed to the unified concept.

Then the prenaration, production, innovation and evaluetion

of a unified mathematics program is described. The report

closes by emphasizing the need to extending the program

of unified mathematics to the majority of secondary school

students.

Tt iq our 1?(TP tlIPt thiq repnrt mny serve as a partial

guide to curriculum improvement in the decades ahead. A

continuous search, under controlled experimentation, for

ways of adapting mathematics study to the capacities of

the human mind and the needs of society, is a necessary

activity of educational development. In any society that

is seeking the better life for its people, the growth of

scientific knowledge, the use of electronic computers

and calculators, and the extension of mathematical methods

into almost all other disciplines, demand a minimum know-

ledge oC contemporary mathematics for all its members.

5
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Chapter I

SIGNIFICANT DEVELOPMENTS IN :.1AT1tEMATICS

LEADING TO A UNIFIED CONCEPT

The growth and development of mathematics during the

last two centuries is a tremendous achievement. To depict

this growth in detail would require volumes of great

length. Nere we must be satisfied with a bird's eye view

of the significant developments leading to the present

day conception of our subject. While all branches inter-

acted in lec-ding to the contemporary structures, for the

sake of clarity we consider the several branches independently

and then show how they became more or less a unified body

of knowledge.

In the 1 ,erature on mathematical education one

frequently finds reference to mathematics called traditional,

classical, old, new, modern, fused, integrated, contemporary,

and unified. Much confusion-and unwarranted distinctions

have arisen from these categorizations. Most mathematicians

look upon their subject as one of continuous development

over a long span of centuries and having a contemporary

aspect which changes as time moves on. When in 1930,

Van der Wnerden labelled his boo:: Modern A17,ebra, a n,me

now freouently applied to the i:re-itment of alr,ebra in the

manner of his book, he aid not intend to say that it was

new-born. All la, meant to convey by the term "modern" was

7



the way the subject was conceived and being taught by

his colle:-,,,ues (at Hamburg) ana himsell. In the fourth

edition of' his boo!:., 1(-, he dropped the word Modern,

using only the word Alrebra. Most of the so-called

classical or traditional mathematics finds itself, along

with newer conceptions and new topics in the body of

important present day mathematical Imowledge.

I. Algebra.

The algebra taught in secondary schools during the

twentieth century, and still dominant in instruction,

may be described as classical algebra. It is concerned

with operating on expressions, finding solutions to

equations, and applying special techniques (factoring,

simplifying, reducing, etc.) to algebraic forms. The

material is applied to solving "word" problems. This

algebra oriEcinated over 4,000 years ago and reached a

climax by the end of the nineteenth century.

The first viewpoint of algebra began with the

Babylonians and Egyptians who created numerical methods

to solve various problems encountered in the organized

activities of early civilization. Most certainly the

dem.nds of a growing commerce, with exchanges of various

reney c=Pncies, lea to the necii -For ch-,rcterizinr; the

answer to a special problein as an "unknown". This primitlxe

8



algel:ra made no use of symbolization except for a system

of numeration_ o far as is known, solutions to these

problc:ms were not achieved by any form of general reasonin

or by proof. 1 was strictly a numerical and an empirical

algebra -- a listing of verbal instructions for obtaining

an answer to a particular type of problem. The methods

used relied on numerical tables, giving the squares and

cubes of whole numbers. Within these limitations, the

Babylonians wore able to solve certain types of cubic

and quadratic eouations, systems of two linear equations,

and certain quadratic systems.

While we look upon this work as rudimentary and

primitive, nevertheless, the Babylonians must be credited

with a substantial achievement, and in at least one aspect,

the solution of a cubic equation, were not surpassed until

the beginning of the 2.6
th

century. However, tl-elack of

symbolization was a great deterrent to creating an organized

science and for over 2,000 years prevented the generalizations

and abstractions so germane to the development of Algebra.

For this reason their contribution should be called pre-algebra.

The Egyptians, contemporary with the Babylonians,

developed an even weaker algebra, so far as complexity and

depth of reasonin were concerned. Althouh. they referred

to an Th.nknown !nd ?2nd - !bol ror it, thfc,. meth:)d

solution was one of FT,uossing an answer and then makin a

9
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correction to it. If an an'Ider was not correct, it was

usually easy to see in what ratio to the given numbers

in the problem, the answer was either in excess or

defect, and it was necessary only to alter the "guessed"

answer in accordance with this ratio. Thjs is a forerunner

to recent ly highly developed methods of interpolation and

iterative processes in approximating solutions to problems.

One of the significant gaps in the deve]opment of

mathematics was the failure of the Greeks to formulate a

concept of rational and irrational numbers, or real numbers.

However, they did develop a highly systematized theory of

ratio of whole numbers which contains, in many ways, the

rnnAnYwN Atanreln-rsnn-F eN-P0. V V.t.v.L. Vy V.YVIA., !AV-J.44/V. V Tt may have been

the failure of the Greeks to develop a concept of irrational

numbers that led them to pursue, as their great contribution,

the axiomatic study of space--the only axiomatic theory in

mathematics until the 19
th

century.

The Droof, given by Euclid, that there is no ratio

of two whole numbers to represent the measure of the

diagonal of a unit square is well known, Because of this

viewpoint, all measure theory involving incommensurable

segments was treated geometrically, not algebraically.

From Euclid until the time of Newton and Leibnitz, every

thinr:, that 1.7s not L,,eoetry was desi:nated as a3;ehra.

10



In the later Wreek period (100-?,00 A.D.) two Greelc

mathematicians, Heron and Diophantus, did make contributions

to the development of :41gebra. Diophantus mIde the first

break.throuf;h toward symbolization :in what is now called

syneopAed a3gebra. Hare he used letters to represent

the unknowns in the equation, and also special sylbols

for addition, multiplicatAon, and enuality. Thus for the

first time, algebra went beyond mere verbal instructions

for performing certain operations on numbers and unknowns.

However his algebra remained essentially numerical and

each problem was given its own special mode of solution.

For Dionhantus, a quadratic equation had two, one or no

solutions, only a positive whole number, or ratio of such

numbers being accepted as roots. It is significant to

note that in the domain of whole numbers and their ratios,

he was correct in his interpretatIon. Finally, it must

be noted that his solution of one equation in several

unknowns, for example 3x + 4y , 5z, initiated a field of

investigation that incubated much of modern number theory.

During the dark ages, the study of mathematics, as

with all other knowledge, declined, and was not revived

until the Hindus and Arabs brou-ht new comnut-Itional

techniques into Play. The Hindus werDthe first to

introduce a form of proof into algebra. They had a.

11



primitive iden oC the hoNloenelLy oC in nn equation.

Thip: xx han a countorp:Irt the :Iron of a flqunre nnd 3.x.x

in the volume of a reetanular parallelopiped with cde:;

3, x, and x. Omar Khayyam in his treaLise on algebra

solved quadratic equation:: in this manner.

The Arabs were more interested in number than in

geometry. They introduced the irrational numbers, but not

understanding their nature, referred to them as fictitious.

To the Arabs belongs the credit of giving the name algebra

to this branch of mathematics. The Arab mathematician

Mohammed Ibn Musa Al-Khwarizmi, among several books he

wrote, entitled one of them Hisab Aljebr w'al Mucabala

or the science of transposition and balancing. The Arab

"Aljebr was latinized into "algebra" as we use it today.

Beginninr7 about 1200 A.D. Europe entered into a

period of increased mathematical creativity, especially

in the field of algebra. The Italian school starting with

Fibonacci, and culminating with Ferrari, Tartaglia, Cordon,

Bombelli, focused its attention on discovering a general

solution for cubic equations. The Hindus had already

given a general solution of the quadratic by comoleting

the square in the form of the universally known formula

for the roots of ax2 + bx -c, (At this time the number

0 was not yet accepted, and one never found an equation

1 2
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written in the form ax2 + bx + c = 0.) With Tartaglia's

formula, given by Cordon in his book, the general solution

Of the cubic was completed and a new search began for the

general solution of the fourth degree equation.

By 1600, the work done in solving equations had

resulted in a large collection of special devices (algorithms)

for finding solutions. The French mathematician, Francois

Vieta, examined all these special procedures and succeeded

in finding a general algebraic theory for finding positive

solutions of eauations of the first four degrees. This

was made possible by the creation Of a system of sy.ibolization

that had not previously existed for variables, constants,

nnricpPrrA.t.i.ons. Vi.eta called this logistica sDeciosa.

where he used the vowels a, e, i, o, u, to represent

variables and consonants, b, c, d, f, g ..., to represent

knowns or constants. Later Rene Descartes introduced the

procedure of using the last letters of the alphabet, x,

y, z, w, ..., as "unknowns" in the sense of a numb3r whoe

value is to be found, and the first letters, a, b, c,

as arbitrary constants, a system quite commonly used today.

Around 1600, zero became accepted as a number and

equations took on the form ax
2 + bx + c 0. With this,

algebra became a science of symbolic calculation on letters

and numbers as contrasted with arithmetic which always

operated on numbers. This algebra is epitomized in content

1 3
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and concept in Euler's Introduction to AlF,ebra (1760)

in which algebra is defined as The Theory of Calculation

with Quantities. This is the first view of classical

algebra. -e subject matter is an assortment of topics

such as can be found in any of the present-day secondary

school textbooks on the subject.

The second view of algebra was initiated in the

fifteenth and sixteenth centuries by the Italian school

with its attention to equations. Having solved the fourth

degree equation in all generality, attention was now

given to fifth and higher degree equations. A host of

theorems were developed during the next three hundred

years, as well as special procedures on isolating roots,

relating roots to coefficients, the number of roots, the

fundamental theorem of algebra, and the well-known im-

possibility of a finite general prodecure for finding the

roots of an equation of degree greater than four. All

of this knowledge found its way into the textbooks. By

1860, with the publication of Serret's Algebra, a hundred

years after Euler's publication, the second, and indeed

even present day view of classical algebra emerged, namely

The Science of the Solution of Eauations. In fact, in

Serret's text one finds for the first time the highest

point in the algebraic theory of equations, namely,

Galois theory which is a first milestone in the development

of a contemporary algebra.

1 1
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The Development of the Contemporary Aspect of Algebra.

It is difficult to fix the date of the birth o/'

modern algebra, that is, when it could be recognized q.s

a unique and different study from that of classical

algebra. Perhaps the first date is 1910 when Steinitz's

The Algebraic Theory of Fields was published. Here

there is a systematic treatment of operations upon abstract

elements, that is, things that are no longer numbers,

variables, or figures of classical arithmetic, algebra,

or geometry. The next book to accomplish this same task

was Modern Algebra by Van der Waerden, published in 1931.

In 1941, the first hook of this nature in English appeared

as A Surveycf Modern Ligebra by Birkhoff and MacLane.

These dates confiym the proper use of the word "modern."

The creation of modern algebra was not instantaneous;

it was preceded by a century of intensive creativity in

research and development of new ideas. During this time,

there were three great streams of mathematical endeavor,

running concurrently, which can be listed as follows:

1. Algebraic, in the sense of solution of equation,

given in the studies of Lagrange and Gauss, with Abel and

Galois developing the theory of groups of permutations,

and the formalizing of this study by Jordan and Serret.

2. Geometric, in that the geometrical explanation

of complex numbers by Wessel, Argand and Gauss led to

the study of vectors which blossomed into what today is

1 5
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called linear algebra. From a pure point of view, this

geometric development was highly influenced by the study

of geometric transformations and the operation of composition

of transformations. Furthermore, the invention of non-

euclidean geometries led to relations between geometries

and groups of transformations, as given by Felix Klein.

This was one of the movements that led to the significant

feature of contemporary mathematics, called its unity.

3. Arithmetic. During the nineteenth century

beginning with Gauss (Disouisitiones Arithmeticae. 1801)

the unfolding of tae nature of number was accomplished.

Gauss gave the first introduction to some of the funda-

mental Ideas of modern algebra, e.g. equivalence relations,

inite commutative groups, and extensions. During this

period, the principal researchers on number were Dirichlet,

Kummer, Kronecker, Weierstrass, Meray, Cantor, Dedekind,

and Hilb rt. The American mathematicians Benjamin Peirce,

his son C.S. Peirce, Gibbs, and Dickson also made

important contributions.

It would be out of place to atempt here.a complete

historical development of these three streams -- algebra,

leading to groups and operational sysvems; geometry, lead-

ing to linear algebra; ond arithmetic,leading to an

understanding of number and some ideas of modern algebra.

We give only some significant examples.
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Returning to the middle ages, we find the first sten

toward the "modern" was the discovery and use of complex

numbers. Cardan used them but called them fictitious.

Bombelli showed that they could be roots of a cubic

equation. DeMoivre, in 1725, gave a complete theory of

computation for these numbers, using the forms a + bi and

r (cos e + i sin O.). The geometric representations of

these numbers, given around 1800 by Wessel (Denmark),

Argand (France) and Gauss (Germany), paved the way for the

acceptance of these numbers as bona-fide mathematical

entities. After thirty years of work, Gauss in 1831 gave

a purely algebraic theory, independent of any geometric

interpretation, that is accepted today. A complex number

is an ordered pair of real numbers (a,b) with the properties

(a, b) = (c, d) if a - c and b = d (equality)

(a, b) + (c, d) = (a + c, b + d) (addition)

(a, b) (c, d) = (ac - bd, ad + bc) (multiplication)

Now the set R = ((a,0)1, a subset of the set of complex

numbers, has the same structure as the set of real numbers.

Further, since (0,1) (0,1) = (-1,0) we can say that a

square root of (-1,0) is (0,1) which is denoted by the

symbol i. Since the set P = ((0,b)) can be identified

with the set ((b,0) (0,1)1,

(a,b) - (a,0) + (0,b) - a + bi

Returning to the Eeometric representation, the number i wos

1 '7
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also interpreted as a rotation operator of 11-- centered at
2

the origin. Later Cayley gave a matrix representation

for complex numbers which for the first time introduced

the idea of a structure and its realization.

Gauss logical exposition of the complex number

system was a turning point in the development of mathmatics

because it marked a first application of the postulational

method to algebra and also because it opened the way for

an explanation of systems of ordered triples (a,b,c),

ordered quadruples (a,b,c,d), and finally ordered

n-tuples, (ava2,...,an). In 1834, the British

mathematician G. Peacock published an algebra in which

the first volume treated the algebra of the domain of

whole numbers and introduced the communtative, associative,

and distributive laws. So novel was this that it gained

no acceptance until 1870. In his second volume Peacock

extended the algebra to include rational and real numbers

by the so-called Law of Mathematical Permanence. This

principal is no longer held, but in essence it decreed

that if a number system is extended to contain new ,m1PmPni--,

then the ^pg,,'ations on the elements of the new system

must be so defined that the properties of the old system

will continue to hold. This idea of extension is the first

hint of the manner in which subsequently vectors were

extended to n dimensions, finite or infinite,

1 8
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The second stream leading to modern algebra arose

from the continued study of solution of equations.

Lagrange sought the reasons for the success in the solution

of equations of the first four degrees and the stumbling

block to the solution of higher degree equations. For

tIpquadratic equation x2 + bx + c = 0, the roots are

related by x
1
+ x

2
= -b and x

1
x
2

= c. Lagrange investigated

the relation of the roots of the cubic

x3 + px + q - 0

!Jsing Cardan's well known formula, namely,

2 2
-qA3 = + + Trip B3 =
22

the roots of the cubic are

A + B, A B,2, 11_2

1 Ni3. 1 .1-3
where -= + -T.3_ and ...

2
= - (the complex roots of

unity). Designating these three roots by xl, x2, and x3,

respectively Lagrange first noted that there can be six

permutations of these roots which can be grouped into two

sets.

(x2,x3,x1); (x
3
,x

1
,x

2
) (I)

(xl,x3,x2), (x
3
,x

2
,x

1
), (x2,x1ix3) (II)

Lagrange proved that the expression

(xi +. + 2xk)3

(where (i,j,k) is any permutation of (1,23))

took on only one value for any permutation in Group I and

another value for any permutation of Group II. In fact,

1 9
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a little algebra w111 show, recalling 1 + - + = 0, that

xl + x2 + 2x3 = 3B; xl + x3 + `x2 = 3A (III)

Finally the relation xl + x2 + x3 - 0, added to those in

III, reduced the solution of the cubic to that of a system

of three equations of the first degree. This is one of

the first examples of reducing an algebraic problem to

linearity.

Lagrange also investigated the roots )f a fourth

degre( Tuation and showed that the expression (r1 r2) +

(r3 r4) took on only three distinct values when the

roots r1,r2,r3,r4of the equation were permuted in every

possible way (4! or 24 ways). This was sufficient to

suggest that the problem of solving equations of the fifth

dci;ree or higher related to certain exDrer,siOns whiclq

were in some way invariant under permutations of the roots.

For over 300 years the problem ofilnding a finite

algorithm for determining the roots of an equation, which

involved only the operations addition, subtraction,

multiplication, division, and extracting roots, challenged

the greatest mathematicians. Lagrange came very close

when he sensed that the key to the problem involved

studying permutations of the roots of equations. Fifty

years after this conjecture, Niels Abel and Evariste

Galois solved the problem--there are no formulas for

equations of degree five or higher. This ushered in a

new era in the development of algebra--the beginning of

20
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the theory of groups and the resulting study of structures.

Galois continued the study which led to the creation

of group theory by examining the set of permutations of

the roots of polynomial equations of given degree n. He

thus derived the simpler properties of composition of

permutations of roots. A binary operation was performed

on other objects than variables and numbers.

The third stream leading to modern algebra concerned

itself with numbers. In 1801, Gauss defined congruence of

integers -- a brand new idea in mathematics. Two integers

a and b are congruent, modulo m, if and only if a and b

give the same remainder when divided by m. An important

outcome of this definition: a b (mod m), is that the

relation "=" is an example of an equivalence relation,

that is, "congruence, modulo m" is reflexive, symmetric,

and transitive. Gauss was the first to show the importance

of this relation. He further showed that this equivalence

relation partitions the set Z of integers into disjoint

subsets whose union is all of Z. E.g. if the relation is

congruence modulo 3, the subsets, called equivalence

classes, are

s = (0, +3, +6, +9, +12,...)

s
1

- (..., -5, -2, 1, 4, 7, 10,...)

s2 = (..., -7, -4, -1, 2, 5, 8,...)

Now an algebra of classes can be formed consisting

of three elements so, These classes can be

2 1
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operated on according to the tables shown.

sO
1

so sl s
2

so s
o

sl s
2

s
o

so s
o

sl sl s
2

s
o

s
1 0

s1 s
2

2
so sl s so s

2 1

This same idea was applied by Cauchy and others to

congruence of polynomials. Cauchy considered congruence

modulo (x2 + 1). The remainder of two given polynomials

after division by x
2

-I- I are then polynomials of the

first degree. Thus for any two such functions one has

f(x) - a + bx (mod (x2 + 1)); g(x) = c + dx (mod(x2 + 1))

From this it is easy to show that

f(x) + g(x) = (a + c) + (b + d)x(mod(x2 + 1)) and

f(x) g(x) = (ac - bd) + (ad + bd)x(mod(x2 + 1)).

These formulas, along with the geometric interpretation

by Gauss and others for complex numbers showed that the

algebra of complex numbers is reduced to that of the

congruence of polynomials with real coefficients, modulo

(x2 + 1). This was a forerunner of the concept of

isomorphism.

These investigations led to the extension of operational

systems beyond the complex numbers. In 184, Hamilton

invented quaternions. Early work on complex numbers

showed that they could be used to describe rotations

2 2
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and dilations in the plane. After years of unsuccessful

attempts, he finally perceived that therobstacle to success

in extending complex numbers was the commutative law of

multiplication. According to Peacock's law of permanence,

this property should be retained. However, in a moment of

insight (after 15 years of deliberation), Hamilton banished

the law of permanence, developed his quaternions, and freed

m-).thematicians to extend their investigations to a much

wider variety of algebraic structures.

In the manner that complex numbers were represented

as ordered pirs of real numbers, Hamilton's hypercomplex

numbers (or auaternions) were ordered quadruples (r, a, b, c

for which

(1) (r, a, b, c ) (r', a', b', c') if

r=r', a-a', b=b1', c=c7.

(2) (r, a, b, c) + ( r', a', b', c')

(r+ r', a + a', b + b', c + c').

Using a suitable definition for multiplication, e.g.

(r, a, b, c) (r', a', b', c')

(rr' - aa' - bb' - cc', ra' + ar' ± bc' - cb',
rb' + br' + ca' - ac', rc' + cr' + ab' - ba')

and designating (1,0,0,0) by u, (0,1,0,0) by i, (0,0,1,0)

by j aril (0,0,0,1) by k, the product of any two of these

elements may be computed by using the following table.
-)

Note: :12- - j' k(-

2,s
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uijk
uijk
i -u k -j

j -k -u i

k j -u

In 1844, F.G. Grassman published the results of a

more general theory of n-tupies. Here he showed the

vast richness of structure that was available through the

use of only a few postulates. He called his develop-

ment the Theory of Extensions (Ausdehnungslehre) and2

although he anticipated many results of later algebraists,

his work remained largely unknown until after 1900 when

it was applied to quantum theory in physics.

The sLudy of mabrices was part of the third big stream

leading to modern algebra. They were brought into being

by Cayley around 1860 as he was studying linear transfor-

mations on equations with two variables. Ignoring the

variables, Cayley abstracted the coefficients of the

transformation and wrote them as a square array. Thus

the transformation

x = aX

y' = cx ± dy

could be completely described by

a b'l
` c d I

Cayley developed an aibcbra of matrices of order n by

using the properties of 1ine-1r transformations on n

2 t
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variables. He also showed how to use 2 x 2 matrices to

represent quaternions and later (188)) how to represent

the complex numbers by a certain subset of the set of

2 x 2 matrices.

To summarize, the nineteenth century produced three

great streams of algebraic development. One of these

was the work in pure arithmetic dealing with the extension

of the real numbers to complex numbers and quaternions,

leading to ordered pairs, trinles, quadruples and n-

tuples of real numbers. Another stream was that of

classical algebra as exemplified in the attempted solutions

of higher degree equations. This stream led to the study

of permutation groups and finite groups which was greatly

elaborated at the end of the last century. The final

stream had a distinctive geometric flavor as seen in

Hamilton's quaternions, Grassman's extensions and

Cayley's matrices, all of which led to the development

of linear algebra and vector spaces. By 1910, all these

streams became one great confluence which we now term

as modern algebra.

Algebra Today.

The preceding par;es have traced classical algebra

from its var:ue numerical beginnings to that of calculations

with ouantities r Inally to the study of solution of

2 6
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equations. The merging of the three great streams just

described gave need for a new definition of algebra as the

study of structures.

This new definition of algebra has slowly evolved over

the past two centuries with two intrinsic characteristics

of all mathematics. First, little by little, the theory

of groups was extended (and narrowed) to include structures

such as rings, integral domains, fields, monoids, semi-

groups, etc. The concept of a group with other structures

operating on its elements led to the development of vector

spaces, modules, algebras, and so on. Por the mat' -matician,

it was the use of, and the recognition of, fundal

strucutres as given above that represented a trem d

breakthrough in mathematical thought. Problems that

previously were insoluble by the techniques of classical

algebra were now examined from a different point of view

and in many cases were solved. In geometry and analysis,

algebraic structures have become a unifying thread which

has recently extended into all branches of mathematics.

The university instructor who gives a course in modern

analysis finds that unless his students have a good

foundation in contemporary algebra he cannot discuss

import:Jnt concepts, for example,that of an operator.

Nor can he discuss the behavior of operators acting on

Banach or Hilbert spaces (both arisinp; from the vector

2 ti
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space structure), the continuity of operators on these

spaces, or the spectral theorem in any of its particular

forms. In geometry the concept of a group enabled the

mathematician. to describe different geometries in terms

of groups of transformations. In fact, the recognition of

structure in geometry actually contributed to a new definition

of the subject as given later. The new concept of algebra

became a tremendous tool in the further expansion of all

mathematics.

The second characteristic is that the structures of

abstract algebra began to find application in the description

of ph,:sical phenomena. In 1890, the Russian crystalo-

grapher E.S. Fedorov showed how group theory could be

applied to classify systems of points in space which

describe the atomicstructure of crystals. This marked the

first time that group theory had been applied to solve a

previously unresolved problem in science. Later, J.W.

Gibbs, an American scientist, used an algebra of ordered

triples to help in the theory of refining oil by cracking

crude oil. Recent applications of matrices and the techniques

of linear algebra (whose foundation is built around the

concept of a vector space ) have helped to

solve technological problems in all sciences -- physical,

behavioral,biolorr,ical, astrophysical. They have also

contbuted to the basic require
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any new development in mathematics -- that is, it must

have application outside of mathematics.

The current view of algebra can be described as an

ever generalizing study of structures for which there is

(1) A set of elements (undefined).

(2) A set of statements relating the elements (the

structure).

(3) A logic for drawing inferences.

(4) A series of propositions that can be proved in

the structure (the theory).

(5) A search and stu::y cf significant realizations of

the theory (the )1Lcation).

From all that has been presented above, it is clear

that algebra today contains ail the essential substance of

classical algebra. But it is also a completely differently

conceived organization in which numbers and equations are

subservient to the structures, the realizations of the

structures, and the host of activities and applications

that can be derived from both the structure and its

realizations. From 1910 to 1955, the development of

abstract and linear algebra was conceived as an advanced

study far removed from the high school instruction. Today

we recognize that this modern alc;ebra must be at the very

core of the alr;ebra we teach in secondary school -- of

coufse, presented in a fonn acipted to hiji school st;lident

2 8



23

maturity. Moreover, the unity of all mathematics demands

that this algebra be taught with every possible appropriate

intervention into geometry and analysis.

Geometry.

The history of the origins of geometry is similar to

the development of the concepts of number and algebra.

Arising out of practical activity (observation of the sun,

stars, and physical pehnomena) and a need to describe

his surroundings, man slowly conceptualized concrete

geometric forms until they took on a meaning of their

own. We know that the earliest definition of geometry

was that of a.study of "earth measure". From texts such

as the Moscow (circa 185U B.C.) and Rhind (circa 1650 B.C.)

papyri, it is possible to examine the type of problems

which were being solved more than 3,000 years ago. All

110 problems solved in these two texts are numerical, and

twenty-six of these are geometric -- mostly concerned

with the problems of calculating areas and volumes. The

Moscow papyrus even contains a correct description of

the formula for the volume of the frustrum of a square

pyramid. Geometry remained a calculating science for over

1,000 years, before it became a deductive subject. This

VIDE; the contribution of the Greeks.

2 9



The Euclidean Era.

Althourth geometry was developed into a deductive

science in Greece prior to Euclid, his collection,.synthesis,

and elaboration of this knowledu,e into the Elements

represented one of the greatest achievements in the short

history of mathematics. In fact, for more than tvo

thousand years nothing was added to geometry to essentially

change its foundations until the appearance of Lobachewsky's

New Elements of Geometry (1829).

It is well known that the geometry contained in the

Elements is neither a complete exposition of Euclidean

Geometry nor is it a flawless presentation of what it

does contain. Recognizing that the text probably app-red

around 325 B.C. (although no original copy has ever been

found), this certainly comes as no surprise. However, it

is ,ssentiai to discuss some of these logical difficulties

in order to understand and appreciate the recent develop-

ments in the subject.

The necessity to accept certain primitive terms as

undefined in order to develop a non-circular system was

neither recogni:ed by the Greeks nor by Euclid. The first

flaw in his work, then, was his attempt to define objects

such as, a straii,ht line (a line which lies evenly with

the )o:L n itGclf), a boundary (solAethin which is the

extre:nity of !-Iythir7!) :_nd a surface (that which h on1;,

length and breadth). As a result certain logical defects
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developed in his system. For example, if a straight line

lies "evenly" with the points on itself, how do we define

"evenly"?

A second fault was that his set of assumptions was

incomplete. It was not possible to prove all the state-

ments contained in the Elements from Euclid's axioms and

common notions. This flaw also leads to certain well-

known fallacies and inconsistencies.

As early as Proposition 1 of Book 1 of Euclid's

Elements, we can find an incomplete proof. Here Euclid

considers the problem of constructing an equilateral triangle

given a side. This well-known construction requires that

we determjne the points of intersection of a certain two

circles. Euclid merely asserts that they intersect, probably

because the diagram strongly suggests they do. The fact

is, on the basis of Euclid's definitions, axioms and

postulates, it can not be proved that the circles intersect.

In order to prove this construction additional postulates

are needed.

Non-Euclidean Geometries.

The first postulate to undergo critical analysis was

the assumption that thr:mgh a point not on a line there

ex1r:tc., one -n1 on17 one line containinp., th pont ;,nd

parallel to the given line (Playfair's version). Math-

ematicians h-ld a feelin7, that this assumption was not

3 1
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independent of the ( 'r postulates but could be deduced

as a theorem. The theory of parallel lines, therefore,

became a focal point; for the energies of some of the

greatest mathematicians of the past (Wallis, Saccheri,

Lambert, Legendre, Gauss, Bolyai and Lobachewsky. It is

a tribute to Euclid's genius that he included the statement

concerning parallelism as one of his postulates (even

though there is indication that he was not quite sure of

its independence).

As we now 1:now, if the postulate concerning parallel

lines is replaced by the following:

Through a point not on a line there exists more than
one line containing that point and parallel to the (1)
given line.

Darfontly logical non-Euc14_dean geometry (hyperbolic)

may be developed. This was the important contribution of

Bolyai and Lobachewsky, who benefitted from the years of

efforts of those who tried to show that Euclid parallel

postulate was deducible from his other assumptions.

It is a matter of record, however, that Lobachewshy

had begun to work on the independence of the parallel

postulate as did his predecessors. His approach was to

assume (1) and Euclid's other assumptions and then deduce

some consequences from them. If he were to arrive at soe

contradiction, the'l !!;uclid's postulate would have been

proved indiot-i.y. j.nce no contradiction was reached,

he concluded

3 2
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a. that the parallel postulate is not provable
from Euclid's other assumptions.

b. that a geometry may be developed which appears
to contr:!dict our intuition but is logically
consistent.

The obvious implication of these two statements is:

THERE I$ MORE THAN ONE GEOMETRY!

It is interesting to note that rarely is one man

totally responsible for developments in a science as we

have described above. Among the great mathematicians

who were attracted to the probles of geometry were

Johann Bolyai, Taurinus, Legendre, d'Alembert, Schweikart,

Lagrange, Gauss. and Saccheri. Sacchcri more than 90

years before Lobachewsky reached his conclusion, pioneered

the use of the indirect method of proof in analyzinrr the

parallel postulate. He, too, could not arrive at any

logical contradiction to the axioms but did not recognize

the significance of his findings. In fact, Saccheri

deduced many of the theorems which eventually became a

part of hyperbolic geometry.

The mathematical world did not immediately accept

the conclusions of Bolyai and Lobachewsky. It wasn't

until Bernhard Riemann's publication, The Hypotheses Which

Lje at the Found!,tions of Geometry (originally given as a

L5rA. but published posthumously in 1L)8) th;tt

to thri

In this article. Riemann not only generalized the concept
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of space by considering various n-dimensional spaces with

metrics but he allowed for the creation of other non-

Eudlidean synthethic geometries by replacement of the

parallel postulate with the statement:

Any two straight lines in a plane intersect.

Also in some of the geometries one has to negate Euclid's

postulate that two distinct lines have at most one common

point.

The immediate result of Riemann's publication was

a burst of activity with emphasis at first on the devel-

opment of different types of geometries. A new light

was thrown on these different geometries by Felix Klein

in 1872. In his Erlanger Program he showed quite clearly

that one of the criteria that may distinguish one geometry

from another is the particular group of its transformations.

Different geometries are viewed as those possessing particular

properties of sppce that are preserved under particular

groups of transformations. A geometry can be determined

by a group; every group of transformations determines a

geometry. (However there are geometries that do not fit

into Klein's classification.) In particular, groups of

similtudes and isometrics lead to affine and Euclidean

spaces respectively.

Morever, ilierri.nn extended the growin subject of

differential geometry from a study of curves and surfaces
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dn three dimensional Euclidean space to a study of quadratic

forms with n coordinqtes. The story of the advance from

Riemann to the present ciTzy global differential geometry

and differential topology is well known to researchers

in this field. Today the development of geometry and

its counterpart topology are goirgon in all directions.

The geometries being studied include projective space,

Euclidean space, Hilbert and Banach spaces, 4, n, and

infinite dimensional spaces, convex spaces, metric spaces,

topological spaces, and so on. These theories are finding

applications in and outside of mathematics, for example

in the relativistic space of the physics of time and

gravity and the quantum theory of nuclear physics. From

all this activity it is plainly evident that geometry

today has a tremendously different aspect than that which

is still in today's high school program.

The Perfection of Euclid

Beginning a century ago, with the revelation of

Euclid's flaws, a movement developed among the outstanding

mathematicians really to clear Euclid of all blemishes.

The search was for a minimal complete set of independent

axioms which would place Euclid's synthetic geometry on a

perfect logical found,-..tion. All inconsistencies, fallacies,

and hidden or win;entionz:d as5uptions were to be eliminaLed.
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The task was first completed by Morits Pasch in 1882. it

was followed by others, namely Peano, Pieri (members of the

"Formularic" group, a forerunner of "Bourbaki") and

culminated in 1899 with the publication of Grundlagen der

Gcometrie by David Hilbert. The problem of perfecting

Euclid was solved for the mathematicians, However, the

solution was far too complicated nnd abstract to be used

as a high school subject on axiomatics and proof.

There then followed a period of sixty years of sporadic

efforts to do something about the subject as a secondary

school subject. Euclid must be saved! The first significant

modification of Hilbert's axioms was given in 1929 by

G.D. Dirkhoff who affected a great economy in the number

of axioms to be admitted by substituting the order and

compleiDness properties of the real numbers.

Geometry Today

Today, geometry must be de.Lined as a study of snaces.

Each geometry is a (set, structure) where the elements of

the set are called points, and the structure is a set of

axioms (including definitions) which relate the points

and important subsets of them. It is useless to attempt

to list n11 these geoetries (look in any library catalog

I_Inder geometry), since to do so would certainly result

in unintentional omissions. This new definition evolved

slowly as a result of two phenomena. The first was

3
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purely mathematical--the discovery and description of non-

Euclidean geometries nnd of "spaces" such as topological,

vector, flanach, Hilbert, metric, etc. The second phenomenon,

and more influential, occurred as a result of advances in

science and technology. The advent of relativity was

most significant. After Einstein showed that the existence

of matter in a space-time relationship is actually described

by a four-dimensional model of a Riemannian space, other

spaces found .Application in physics, astronomy, biology,

and economics. Euclid's geometry is just one of many,

and to imply otherwise would be to deny all that has

happened in mathematics and science during the last 100

years.

Row geometry may be viewed today is epitomized in the

following description by Seymour Schuster:

"Geometry is to be regarded as a body of knowledge

that had its origins in the study of physical space and

physical objects, but concerned itself with abstractions

that derived from such study. Hence early geometry dealt

with concepts such as points, lines, curves, surfaces,

distance, area and volume. Over the past few centuries,

the imagination and creativity of mathematicians (influenced

coniderably b,r the charw.,inr; ideas in phys,ics) have pro(luced

nr,!.ny c:...tenion.:; of this tudy. They have developed hiffner

levels of abstractions, variations of axiomatic systems,

3 7



and many dirferent, techniques fol.' the ahalysis of geo:netric

probles. Thus wc have different geometries: Euclidean

and non-EucliOe'ln reometries, projective geometries, n-

dimensional and infinite dimensional geometries, and a

host of others, and we have different analytical techniques

that are exhibited by some of the following familiar

labels; analytic geometry, vector geometry,transformation

geometry, differential geometry, algebraic geometry,

combinatorial geometry and still others.

Unification of 11athematics.

The foregoing historical development of algebra and

geometry indicates Lhe sort of unity that mathematics

has achieved. One cannot help but notice that there are

common concepts and strands namely -- sets, relations,

mappings,operations, structures, and logic that pervade all

the branches. These ideas occur in all the branches with

exactly the same conceptualization and mode of use. While

the funrImental elements -- points, numbers, functions, or

what you will, may take on a specific meaning, according

to the structure placed upon them, the same structures

appear in all the branches. These fundamental ideas

become unifyie age;J:s. This unity and inter-relatedness

be O'fl' J in ilau::tratc, in r

the orrylnization created by Ro1lrb17.1. We shall refer to

3 8
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it as "Mathematics in a Contemporary e.tting."

This unity of m'tthematics has been well expressed

by Andre Lichnerowic::, a distinguished professor of Applied

Mathematics at the College de Prance, as follows:

"Vhat Piaget calls deductive sclences logic,math-

ematies in the -osual sense of the word, and also tnformation

theory -- I shall now baptize "Mathematic" because it all

concords with the mathematical process and its ambition

to build up a type of dlscourse "without background noise"

which is coherent and compelling for others and able by

its very form to prevent rejection of its content.

Logic may mean either the mathematical study of certain

forms of algebra or what is also often called Metamathematic.

But we have learned with Godel that mathematics is not

only infinite downwards -- this we have already known for

some time but also upwards and that it is pure con-

vention which now and then makes us put up the sign

"Mathematics country begins here". Recently, for specifically

mathematical reasons with the apnearance of the notion of

category, the sign was moved upwards above the concept

of sets.

Mathematics has been studying itself for a century

and a half and has become aware of its real ambitions and

the limi-s imposed on those ambitions; it throws n aseptic

1ir7ht everywhere on tho vork.in':s of our minds ahcl on the

M-Ahen:tics ifld T-cansdiscinlinaritv. Address by Andre
richnerowic z at-0 E. C .1) . Conference Nice , 1970

40



conditions of communication, the essential point being as

follows: any would-be unequivocal discourse without

misunderstandings or background noise can only be a dis-

course subject to mathematical severity, i.e. in fact, a

mathematical discourse. But the irony of mathematics

has supplecnted this by the following: it is impossible

to prove mathematically that the mathematical discourse

is really uneouivocal. Anyone who studies contemporary

mathematics' view of itself will observe three major

features.

One is first struck, I think by the absence of a

priviler,,ed plan of mathematical beinc,;s. A set (or a

category) is, I venture to say, a set of anything --

numbers or function- c,m,-tinly, hut. a]so n set (yr sentences

in a language, of elementary tasks in a project or of

exhchanges within an economy. Various structures can be

defined from these sets, the actual concept of structure

lending itself to a technical definition which has no

0-ace here and is based on two fundamental operations

concerning sets: taking the product of several sets,

taking the set of the parts of a set. Perfect dictionaries

can exist between sets, respecting or transporting structures,

which leads us to the concept of isomorphism between structures.

At the same time, there is no idolatry of the thin7 for

itzel-r, no wo?::::_n;; of mirr2cle:;, within tho in-ttherritjcal

prorsoss. mho mithem.ltician always works to the nearest

perfect dictionary and often unscrupulously identifies

objects of different nature when a perfect dictionary or

4 1
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isomorphism assures him that he would only be saying the

same thing twice in two different languages. Isomorphism

takes the place of identity. The Being is put between

brackets and it is Precisely this non-ontological char-

acteristic which gives mathematics its power, its fidelity

and its polyvalence. In truth, any fact can be regarded

as mathemtifiable so long as it submits to this singular

treatment of isomorphism or rather insofar exactly as what

we overlook in this way is not imoortant to us. We can

always weave a mathematical net with an arbitrarily close

mesh but from which the ontological wav2 will necessarily

flow away.

The third feature of conteporary mathematics is its

unity. "77 making a common language and finding common

elementary structures it has cast aside the old historical

framework which would have broken it up into disciplines

evolving indifferent ways. That is why we can speak of

the Mathematic."

This is a beautiful and highly literate expression of

mathematics today, which, to place in more common language

would be to destroy its effectiveness. Such a viewpoint

however was made possible by three outstanding contributions

among many other of lesser importance. The first of these

Georg Cantor's ;;et Theor (1874-'1E127). Its accept-q1ce

at the :;tart was deaitjed by ceri;in 'radoxes which were

4
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later removed, but for the first time in the history of

mathematics, the elements under any discussion were

singled out into a domain of discourse. These elements

were given a mode or symbolic process for representation,

and a meaning by the structure placed upon the elements.

In this way, precision was given to the extended study of

the (set, structure) through the use of formal logic. For

the first time in history, the word "abstract" had a new

reference; it meant, essentially, that the elements were

witho.:.t any sense of esistenee or meaning except that

imposed by the nostulates and definitions which constituted

the structure. This was David Hilbert's contribution,

which came to be known as "Formalism".

Fr^m structures thr,r(n rIve,lvf,d lar3-nr str-etur-s,

and it was natural to suppose that one could find a complete

structure for all that came under the name of mathamatics.

In fact Hilbert attempted to develop such a program of

mathematics, and it adds more to his fame that he did not

succeed, for later meta-mathematics showed that this is not

possible. (See paragraph 3 of Lichnerowicz above). How-

ever, formalism transcended the other schools of thought

such as intuitionism, and logicism, and today it is the

basic setting of all mathematics.

It remained for the group of mathematicians who were

org%ni:..e(1 in the rid 3.90's rind crtlled the:nselves

4 3
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to take the last step so far as mathematics today is

concerned. Using sets as a basis, and the formalism of

Hilbert, they reorganized and rewrote all the essential

existing mathematics -- traditional and modern -- into a

contemporary setting. Their work did not constitute new

research or discoveries in mathematics but it was an

attempt to organize existing mathematics in a form for

basic study by prospective mathematicians. They broke

down the walls separating arithmetic, algebra, geometry and

analysis and made a great overall open structure. In

years Past a mathematician used to refer to himself as a

geometer, or an alcrebraist, or an analyst. Today he is

more apt to spy "I am an algebraic topological analyst."

This is the contemporary setting Of mathematics.

While at the secondary school we do not attempt to teach

mathematics just to procure future mathematicians, yet

for general culture we should reflect in our program the

contemporary nature of our subject and its use. How this

can be done is the subject of the next chapter.

4
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Chapter Ti

SIGNIFaCiii;T REFORM EI,TORTS IN SCHOOL MATHEMA.TICS

It was only natural that the traditional separation

of mathematics into the four branches - arithmetic, algebra,

geometry, analysis, - would set the pattern for teaching

mathematics. In the 13th and 14th centuries arithmetic

was a university,study pursued by the leading intellectual

leaders of that era, by the 17
th

century it had already or

Cescended into schools preparing for entrance to universities

firr business, governmental and maritime careers. During

the 18
th

and 19th centuries it found a place in upper

elementary school and lower secondary school instruction:

1-

In the 201-1 century all arithmetic of whole and rational

(positive) numbers is mastered by the majority of students

before leaving elementary school. Only the application of

ratio, proportion and percent to business, banking and other

social uses remains a part of lower secondary school study.

In the 14
th

and 15
th

centuries only top researchers

were engaged in algebraic study confined mostly to the

solution of eouations and systems of equations. In the

16
th and 17

th century, this algebra became a university

study exemnlificd by Euler's treatise of alg,ebra as a

study of calculation with quantities. At the end of the

18th century !nd Onrjhr; the l9th centnry, thiz alc;ebra

4 3
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entered lower university and upper secondary school study

while the more theoretical parts remained as college

algebra. At the beginning of the 20th century, elementary

algebra - quadratics and beyond had established itself

as secondary school study - (Grades 9 - 12).

If a mathematical tree had been drawn four hundred

years ago, it would have put arithmetic and mensuration

(geometric measures) as its roots, algebra as its trunk,

both supporting the crown of geometry. Geometry, the

type developed by Euclid and expanded on by great scholars

down through the centuries, was researched by the

mathematicians, and taught as the only axiomized structure

of knowledge in university institutes of geometry (The

Cremona institute of Geometry, the University of Bologna,

e.g, which still exists today). It remained a university

subject until the middle of the 19 th century when the first

few books of Euclid descended into the last years of high

school study. Today, Euclid's plane geometry in modified

form is generally a tenth year school study.

The calculus was conceived by Newton and Leibnitz

during the period 1665-1700. It was post-university study

until 1750 or later. From 1800 to 1870 it was an upper

university study, but by 1900 it had become, in the

lart;er established universities, a sophomore - junior

yer study. In lc)08 Felix Klein urged th:Lt ciculu:; be

taucjit in the last year of the Germn (;ymnasuim (1 th

4 6
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school year) and after World War II, the calculus moved

down to become a first year university study. The tree

of mathematics moved all of its previous subjects down

into the roots and trunks and calculus became the crowning

glory. In. the 1950's for capable students, an advanced

placement program moved secondary (9 - 12) instruction in

algebra , geometry. and trigonometry to grades 8 - 10,

a pre-calculus study of algebra, trigonometry and analytic

geometry to grade 11, and a year of calculus study to

grade 12.

The only goal of all this secuential arrangement was

pl.eparation for the study of calculus. The program was

established by the College Entrance Exayaination Board in

1901 and is almost universally in existence in the schools

of the U.S.A. today. It is illustrated by the Figure 2.

The use of this mathematics was largely or totally confined

to the study of physics and a.;tronom. 1r -ountries other

than the U.S.A., the branches had become fragmemed, that

is,algebra, geometry, and trigonometry were taught in

each of the school years 7 through 12 but each remained a

separate branch, mostly unrelated until the study of calculus

was begun. Calculus, for those who managed to continue

mathematicr, study, became the great unifying agent.

To'Thy the U.S.A. is the only develooed nation thnt

l00 conceo6Lon of r,cnoration of the

4
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branches. A whole year of first course in algebra is

followed by a whole year of synthetic Euclidean geometry;

this is followed by a whole years study of a second course

in algebra which is about one-third merely review of the

first course. This is followed by 0 terminal year study

of solid geometry, trigonometry and sometimes more study

of algebra. The students are left with an 1850 conception

of mathematics as though nothing has happened in mathematics

in the last 150 years.

However in the 1950's dissatisfaction with the status

quo gave rise to reform movements - at first in the U.S.A.

and later world-wide. The strongest force for reform

came from the universities where there was close relation-

ship with the graduate and research activities of on-going

mathematics. The criticism that arose resulted in a

radical change of presentation both in content and formality

of undergraduate mathematics courses and a strong disapproval

of the high school preparatory mathematics.

The first two efforts at school reform were the

University of Illinois Committee on School Mathematics

(UICSM), and the Commission on Mathematics.of the College

Entrance Examination Board (CEEB). The UICSM began by

listing 104 skills the Enp;ineering School expected of

entrants from the traditional program. However the 1 ter

study switched to developin concepts as well as skills.

49
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'1.1'.he work and report of the Commission resulted in the

form,?.tion of the School Mathematics Study Group (SMSG),

which while maintaining the traditional separation of the

branches in high school study, developed a curriculum for

school years 1-12 that did update the concepts of algebra

and geometry.

While many people ascribe the impetus for reform of

the study of mathematics in schools to the successful

launching of sputnik, the professional attack on the

problem came at the 1958 Edinburgh. International Congress

of Mathematicians. In the Educational section of this

Congress the first paper revealed the lack of any genuine

mathematics being taught around the world to stu:lents

ages 6 to 16, the most formative cognitive years of life.

A third session was given over to U.S.A. efforts to im-

prove mathematical study (the UISMC, CUPM, and CEEB and

SMSG with speakers Tucker, Allendoerfer, Price, and Begle

among others), At the close of this sessiOn, mathematicians

and educators of all European Countries and the U.S.A.

remained for more than 2 hours to discuss what their

respective nr;.tions should do to reform school mathematics

instruction. Among these persons was the educational

director of the Organization for European Economic Co-

operation (OEEC), later to become the Organization for

Econozlic Cooportion ;J10. Develonmr:nt (OECD).

In November, 1958, following the ICM meeting, the

5 o
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OEEC organized a two-week seminar held at the Inter-

national Center of Pedagogy, Sevres, France. It was

-,ttended by repreentatives of all the NATO countries

and concentrated on a thorough examination of the math-

ematics program in effect in France from the L'Ecole

Maternelle througb L'Ecole Normal Superieur. The p:.ogram

was found to be formal and severe, but of a 7intage of

l350. As Lichnerowicz said later:

"In the whole world, and particularly in France
our education had adopted a psuedo-historical style,
in which history is artificially reconstructc'd in a
generally mistaen manner. Each mathematical notion
is embedded, in our instruction, in the philosophy
of the time in which was created. In studying geometry,
we have been obligated to become Greek, and Arabians
in studying 'Classical algebra, and Western people in.
in 17th and lth century in studying analysis or
mechanics and that was the end of -- clucation.
Thus, Lhe ordinary man had to ask, IL possible
to invent something in mathematics? This ouestion
seems to me the most serious Protest against a certain
type of education. Such non-unified concept of math-
ematics brings the students into a stage of deconditioninE
followed by a painful stage of reconditioning. The
students have been obliged to think about the same
thing over and over again by means of different con-
cepts which appear strange to them and like different
languages."

As a result of this seminar, OEEC arranged for an

international seminar to discuss what is new in mathematical

thinking, and what means should be taken to reform math-

ematical education so as to reflect contemporary notions

and uses of the subject. This seminar took place at

1-oylumont. Frrice 'Plovember - December 4, lgriq and is

reported in New Thinking in School Mathematics, OECD,

Paris 191.. It was this seminar and its report that gave

i
0 a



rise to the Nordic Committee on Mathematics Reform (Ice-

land, Norway, Sweden, Denmark, Finland), the School

Mathematics Project of England, the Chambery Plan of

France, and Kational Comittees in Italy, Greece and Spain.

The report made a strong case for reform, a unified

syllabus, the use of modern terminology and symbolism,

the elimination of most synthetic geometry and much

obsolete algebra, the introduction of vectors and vector

algebra including vector spaces, the inclusion of differ-

ential and integral calculus through a conceptual approach,

and the teaching of probability and statistical inference.

(It is significant that the teaching of flow-charting and

computer programming was not mentioned at this seminar. Com-

puters had not yet arrived in the world of school mathematics.)

How to implement these new concepts and topics, how

to educate and re-educate teachers in the newer concepts

and how to create teaching materials were problems that

required further study. To prep,re materials, OEEC

convoked 17 mathematicians and educators for a one month

working session in Zagreb and Dubrovnik in August and

September 1960. Their work_ is given in Synopses for

Modern ;.econdary School Mathem-tics, OECD 1961. The

synopses proposed tonics for the first cycle of secondary

school (Grades and for the second cycle (10-11-12),

ihe way each toe w,s, to be treated in the

5 2
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Classroom, but still left open the procclure of itnifying

the instruction to classroom experimentation in the

years ahead.

After observing the emerging programs of mathematics

study in the nordic countries, Belgium, France, Germany

and England, there was evidence aS early as the fall of

19()-3 that there was shaping UT) a general conception of

unified mathematics. The conception was based on the

algebraic structures that had first been brought into

prominence by Van de Waerden's Modern Algebra (1930)

and Birkhoff and MacLane's Survey of lodern Algebra (19)!1)

The work of Georg Papy and Willy Servais of Belgium were

especially significant for their spiral approach to the

mporta.nt strands t4uica. around. LeJlt:-;

The OECD organized a final conference of all its member

countries, held in Athens November 17-23, 1963. The

report of this conference appears in 1.fathematics Today-,

A Guide for Te-chers, OECD, 194

With the publication of this report, there could be

no doubt that the immediate future of mathematics study

should take the form of a single unified subject of

instruction. This conclusion was further strengti)ened by

the Cambridge (Massachusetts) Conference, Report on Goals

for School Mathematics. This report pointed out the

-ich oper-Lcrl

respect to - classical curricuJum framework, and the 1-tc!z



of adenuately prepared teachers to teach contemporary

mathematics proposed by the Conference. The proErams

(two or them) pronosed by the CaLibride group, were concerned

only with the teaching of a contemporary mathematics that

would be required of all scientifically minded persons in

the decades ahead. It, in essence, reconstructed a 1963

conteinporary ,Iajor mathematics proEram through the junior

year of a top-rated university in a form that was to be

mastered in 19n0 A.D. at the end of the senior high school

study (by can-ble students).

It is now established that much of what these math-

ematicians called for can be learned in the secondary

school. One wv is throuEh a unified mathematics proEram

that has been developed nnd is set for th in the next

chapter.
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Chapter III

AN EI,IERGING CURRICULUM IN SECONDARY SCHOOL MATHEMATICS

The vast accumulated and growing body of mathenatical

knowledge that is capable of being learned by secondary

school students can no longer serve as a principal basis

for building an educational program in the subject. There

is just too much of it. Of course there is a core of

mathematical understandings and skills, not too large,

that is essential for carrying out everyday activities--

arithmetic computation with numbers in decimal notation,

geometrical explanations of size and shape, and the use

of formulas nd graphs. This knowledge also appears to

be useful in the generation ahead, and it must be learned

in schools. Hence it must remain in the curriculum. 13ut

if we attempt to construct a curriculum based solely on

special utilitarian objectives we shall make a number of

mistakes. First, viewing the changes in technological

development and social behavior in the past decade, and

still continuing, we can expect many utilitarian needs

of today to become obsolete and their practice useless

ten years from now. We need only cite the rule of three,

the rule of fire, and the ;-lx-percent rule for findin

interest, once tau7ht to every junior high school nunil.

If the :reAcr does not -oeconi!:e thee, he need not worT__

they are obsolete and not



Li 8

Secondly, utilitarian training in mathematics is

generally taur,ht through rote learning without comprehension

of the underlying theory thus constraining the mind-to

act in a narrow behavioral associative manner rather than

being taught as a. basis for aiding the inte2lect to form

generalizations for wider application. Thirdly, it is

an attempt to make of the human mind a cog in a techno-

cracy -- rather than to c eate a flexible mind that can

adapt itself to new situations -- and indeed to be the

creator of t'lam. Lastly, it is evident that it is impossible

during the school years seven to twelve to determine which

students will need what special mathematical knowledge and

skills in their future careers. Hence, special utilitarian

aims can play only a minor role in the school mathematics

program.

In chapter one it was shown that formal mathematics

can be organized in terms of the fundamental ideas of sets,

relations, functions, operations, and structures, both the

algebraic -- group, rings, fields, vector spaces -- and

topological -- compact spaces, metric spaces, and others.

This fact was established by Bourbaki as early as the 194.0's.

What was not known, until quite recently, was how a similar

type of unified organization of subject matter could be

presented to secondary school stdents in a teachable and

learnale for:n. Guide lines for such a construction h7;ve

beeoe available in the form of syllabus conferences and re-

cent classroom experimentation in the United States and Europe.

5 6



The programs that are emerging, as revealed by these

conferences and experiments, while differing in degree of

formalism and abstractness reveal a strikingly common

structure. Thc development has a kind of double helix

orp:anization in which abstract concepts and structures

a central core develop in coordination with the most

important realizations of these strucuters namely the several

number systems, matrices, and synthetic, coordinate, vector

,11(1 transformation geometry. Probability and statistics

as pure and anDlied mathematics, calculus as real and appled

analysis, and numerical analysis related to the use of

digital computers are futher realizations of the structures.

At all times informal logic provides a precise coordinating

lenguage.

To show this substance in more detail, it will be

convenient to consider separately how each of the topics--

algebra, geometry, analysis, probability, logic, applications

and numerical analysis, are entering in the school program.

Then an overview will be presented on how then topics

merge into one continuous unified study.

Ps

Algebra Instruction.

Our purpose in this section is to answer the duestion--

how c n Le or:aniscd and presented to 1rh school

stdents in to b2 usen:ul, blit which will reflect

both in content and spirit the conteli:porary viewpoint of

the subject? A preliminary guide line for presenting all
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secondary school mathematical study is the following:

1. Develop the concepts of set, set manipulations,

relations, mappings and operations.

2. Use notions from the theory of sets and the

properties of operational systems to introduce the concepts

of the structures of group, ring, and field.

3. The teaching of important topics fromclassical

arithmetic, algebra, and geometry should arise from the

study of properties possessed by these fundamental structures.

Develop the concept of vector space and its real-

izations as one of the strong unifying elements of all

mathematical study at the secondary school level.

As remarked earlier, algebra is no longer merely

ealculaLion with numericl and literal Quantities, nor

just a science of the solution of equations. It is a

more encompassing study of structures, realizations and

all the activities derived from both of these entities.

At the secondary school level, we shall mean by structures

essentially those of operational system, group, ring, field,

and vector space. By realizations we shall mean the

various systems of numbers: whole numbers, integers,

rational numbers, real numbers, complex numbers, finite

(clock) number s:/stems, conformble matrices, nolynomials,

nnd vectors (or ordered n-tuples), all of which exemplify

or scrve ode is for the r.!.rio,1s strucburos. ty

we shall men the use or vr,riahles rild the study of
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expressions, fpnctions, solution of conditional sentences

(equations and Incquations), absolute value, and application

to problems both within and outside of mathematics.

These activities include all the important skills

and computations learned in the traditional algebraic

instruction but now treated from the contemporary viewpoint

as well as many important new ideas. The use of the fun-

d-Jmental structures lies not in their formalism or rigor,

both of which need not be emphasized, but in their dominant

role of unification of mathematics, of permitting efficient

stu.dy and giving genuine understanding of the basic concepts.

Secondary school algebra involves the following content:

operations and onerational systems: groups, rings, field,

Jveetor spitec;s, number systes, functions including poly-

nomial, rational, irrational, exponential, logarithmic and

trigonometric, their construction and their graphical

representation, the solution of systems of equations and

inequations including those with absolute value expressions,

applications including isomorphisms and models.

To visualize a possible curriculum sequence, we state

in more detail the topics that must be considered. To

bridge any existing gap between elementary and secondary

school study the seventh year can begin with the investin;ation

of finite, so-called clock operation systems, which can be

fiesjgn-,t,cd 1'7



52

(n clock numbers, addition,
multiplication)

and contrast their properties with those of-familiar whole

numbers. This study initiates the concept of a variable,

the idea of domain, the search for an identity element and

existence of inverse elements, the commtativity, associativity,

and distributivity properties, -el-1'2 construction of ex-pressions

and the solution of open sentences. Thus in (7,6, +, .),

2x + 3 - 1 has two solutions, namely 2 and 5; but 2x + 3 -

has no solutions.

This study can set a base for a general study of a

binary operation defined on a set E, as one that assigns

to each ordred pair of the Cartesian produce E x E one

element of the set E. The usual operations addition,

eyilonentation (or power), subtraction and

division are re-exmined in this light as well as new binary

operations such as maximum, minimum, constant, first element,

second element, lcm, gcf, and others created by the students.

These operations are examined for the properties listed in

the f,Drer,:.)ing paragraph, and then used for calculation in

numerical expressions that can be simplified to a single

element. The work culminates in sin7,1ing out the pro-

perties of a group which are then stressed as fundamental

to all subsequent study. Later, after the study of inter;ers,

r-ttion:).1s, re:J1s, transfortions of a plrale, the r;roup

117fl ex-105 to w;:rr.nt the study of

itself ns an 4r ,',)rtant structure.

(3 0



The concept of function is usually introduced by mapping

a set into itself, or into another set, using arrow dia-

grams. These diagrams are now finding use in elementary

school instruction. The role of domain and codomain now

enter the instruction. Relations are contrasted with

functions or mappings, the latter being a special type of

relation. This initiation to function paves the way for

later concepts of ordered pair definitions, and ultimately

the definition in terms of subsets of the Cartesian product.

Right from the start, the contemporary notation of function

should be used namely with f, g, h as functions, for example

f: x > x + 3. The function that takes each

x(of a domain) into x + 3.

g: x < > x2. The function that maps each

x into. x
2

The notation f(x) or g(x) is used only for naming the as-

signed element, or the second element in the ordered pair

definitions. Finally the operation composition on a set

of functions extends the idea of operation beond that

defined on number sets only. The composition is designated

by f 0 g, read "f following g". All the above development

is limited at first to whole ruld finite numbers systems.

When integers are introduced (there are many wys of

doing this) their iT,roup structure under 7cidition is stressnd.

Now (,11 the prcrrious ark on expiessions, func:tions,

6 I
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solution to conditional sentences, mappings, etc. can

be applied to the set of integers, revealing new possibil-

ities, e.g. subtraction is an operation cn the integers.

When multiplication is introduced as the operation, the

group structure does not exist. With the two operations

we have a new system (z, +, .) which is a ring. This

ring of integers can be ordered. In a similar sequence

of study, the rationals under addition form a groum.

Under both operations they form a field, and to be sure

an ordered field symbolized by (Q, +, (). This field

has gaps, for example there is no rational number to solve

a
2

X- - n, where n is not a perfect square, that is or

b/0. To remedy this situation real numbers are

introduced in an informal manner, by e,.djoining all ir-

rational numbers to the rationals to give a completely

new ordered field structure. A study can be made of

operations on real functions, that is of f + g, f g,

f - g, and f ÷ g (the last with domain restricted to those

real x for which g(x) / 0), with graphical illustrations

of all these cases.

The polynomials can be constructeC_ by the use of

the constant and identity functions and operations of

0611ition and multiplication upon them. The polynomials

present a new ring structure. All the usual traditional

stdy factorin, ,77-!phs, cud,-atic

equations, nnd -11-tional functions -- arise naturally as
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activities but always in a setting that demands a specif-

ication of the domain of discourse in each activity.

Similar approaches can be made to the study of matrices,

complex numbers, and. exponential and loj;ariti-Jaic functions.

Thus the entire study of school algebra Grows from the

simnle to the more cannlex, and from the concrete to the

more abstract over a period of six years of study. The

parallel and interwoven development of structures, real-

izations and activities is illustrated in Figure 3 on

the center ana right-hand coltam.

6 .3
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Geometry Instruction.

The most debated subject during recent years from the

point of view of school instruction, is geometry. In

1959 when the famous mathematician Jean Dieudonne said

"Down with Euclid", he did not imply that geometry

instruction should be abolished. To the contrary he

enhanced the study of geometry, but from an entirely

different approach than that of a long synthetic study of

Euclide:Jn geometry with its global set of axioms. Recent

conferences at an international level likewise all point

to the necessity of teaching geometry from other points

of 'view in addition to the synthetic approach, and to make

the subject an integral part of all mathematics. In

general the past method of the study of geometry isolated

it from all the other parts of mathematics.

The essential elements of geometry -- points, lines,

planes, space, polygons, circles, rays, segments, angles,

common solids, etc. are now taught in the elementary sehuol

as physical elements in the world about us. At the start

of secondary school it is only necessary to review these

concepts, to develop some skill in making representative

drawings, and to secure some sort of abstraction of these

elements as ideals of what they represent.

Today, secondary school geometry must be conceived

of as study of spaces. Each geometry is a (set, structure)

6
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where the elements of the set arc called points and the

structure is a set of axioms, including definitions, which

relate the points and their important subsets. With this

conception, instruction in geometry must be brought more

and more into relation with algebra and its structures,

and thus it must be developed so as to permit and exhibit

the Use of algebraic structures and techniques. This is the

spirit of the tis. In this respect, a very important

ob:jective should be to develop geometry so that it leads to

bc,sic understanding of vector spaces and linear algebra.

There are a number of ways, all valid, to study spaces.

One can usejntaition alone and study physical objects

in 2- and 3-space and, by abstracting shape, position,

and metric properties where they exist, develop a practieL,.1

geometry or a ast a useful set of geometrical relations.

One can proceed synthetically, as Euclid did, choosing a

convenient (but small) set of sxioms. One can coordinatize

:Dace and make use of the real numbers, as Descartes in-

dicated could be done. Perpendicularity and a distance

function can then be used to obtain the Euclidean coordin-

atized plane. One can also follow the Erlanger Program of

Klein, studying mappings, transformations and groups and

the resulting geometries. One can also use vectors, first

as sensed:line segments, and then as points in a space with

a fl.xml to !In alulc2br:1 of p0 nt as n-tuples.

Then one can go from affine to Euclidean vector space by way

6 (i
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ofan inner product of vectors. flince in the secondary

school we are not, nnd do not need to be, solely concerned

with teaching future professional mathematicians, none of

these approaches shou]d he used to the exclusion of the

others. It appears at a contemporary view of geometry

for the educated layman is best achieved by a study that

contains all these approaches.

With the educational goals stated at the start of

this report and considering the mathematical content

feasible for secondary school instruction, the following

ob:jectivss should guide the development of the secondary

school geometry instruction:

1. Develop the concept of space as a set with special

subsets, having structures that are linked to others --

especially vector, affine, and Euclidean space.

2. Develop the knowledge of precise relationships

between the line and the set of real numbers. This leads

to coordinatized space.

3. Develop an understanding of the principal trans-

formations, groups of transformations, and their application,

especially in a coordinatized space.

4. Develop an understanding of an axiomatic structure

by this senuence of study: the affine line, the affine

plane, lf.'fine suace metric. flp.ce, Euclidc.;:n npce as a

vector ace

5. Dew:lop skill in applying the several methods of



geometric ck:velopment to the solution of original problems --

both mathematical and applied.

6. Unify the mathematical study of all;ebra and geometry

in the concept and apnlication of vector spaces and linear

algebra.

Geometry instruction should be included in every yar

of study beginning in grade seven and continuing through

grade twelve. It should grow in complexity and abstraction

and at all times be related to those aigcbraic methods

that enable it to become imbedded in a vector-space

structure. Al :1.1 times it should be applied so that it

becomes a wr:y of thin)d_ng. As Willmorc (1970) has said,

"What is important is a geometrical way of looking at a

mathematical situation; geometry is essentially a way of life.

There are many seouences in which the geometric

inL;truction outlined above can be organized to achieve

desired objectives. One need only study the official

syllabi of European countries to recognize how many different

approaches, with different emphases, reach the same goal.

The following cenuence, integrated into a six-year unif:ILed

study, is one reasonable proposal:

1. Start with a physical, informal study, using

dr:twinm Frcnor foldIng, measurinf,:, and physical objects

to i;aln a_n i!Ituitive fr)f fl rare :: in ELIC116e:In

c , 42: ,n "..1 ror onlents 7,11d !!n.[Tln.

2. Develop the npmber line as tt mapping of real nuffccr



60

into the set of points on a line, preserving order. Scale

the line many ways to develop the linearity of relations

of the scales, x' = ax + b. Compare yard with meter, dif-

ferenc. temperature scales, and so forth.

3. Develop lattice pointJ as intersection points of

two directions. Use the coordinatizeC affine plane (parallel-

ism only). Introduce perpendicularity and develop trans-

formations of t'-le plane that are isometries. Use translations

and groups of ,n2nslations in connection with vectors,

equipollence of vectors, and addition of vectors. Use

both, transformations and vectors to prove relations in the plane.

4. Introduce dilations with a fixed point and elementary

ideas of similitude.

5. introduce axiomatic affine the geometiv w.ith a

minimum of axioms. Develop ideas of proof and prove

theorems. Apply them to finite models, then to lattice

Points, and finally to the continuous plane.

6. Using further axioms (or better, informally),

introduce the coordinatized affine plane.

7. Introduce perpendicularity and distance to obtain

the Euclidean plane. Examine the group of transformations

constituting isol-:,*!es, treat congruence by isometry. Do

linear equations and inequalities with respect to the inter-

section of lines (r..d half planes. Relate them to Irmtrices.

? x to tr,nsformntion in the nl-ne.

8. Introc-1;ice 3-spL-,ce, both pffine nnd Euclidern, informllly

6 9
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Study relations of lines and planes in space. Consider

the measure of length, area, and volume.

9. Introduce (informally or with axioms) coordinatized

affine 3-space.

10. Do the 'alebra of points in an affine plane.

Develop the notion of a localized vector and the equation

of a vector line and an affine line. Apply this to geometric

properties in a plane.

11. Develop the vector-space structure and its linear

algebra; apply this to the plane using the concepts of

basis, linearity, dependence, and independence; give many

other illustrtions and applications of vector space.

12. Introduce the concept of inner product; develop

affine =c-space as a vector space, define 1,rpendicularity

and Euclide 3-space, and develop theorems in Euclidean

"Dr-space.

13. Develop the conic sectio:is, either by vectors

or by rectangular coordinate geometry. Generalize trans-

formations in the affine and the Euclidean plane.

1. Use matrices, transformation , and complex numbers

to develop and relate all mathematics in developing trig-

onometric analysis.

The (Leoetry pro::,ra!1 :;uar,ested in the brief outline

above eciecr! 2n..2, to be :Aire. It :tttept

2hO1 t t. c:eC.C2t1.y todri

portant (7,eactric-.1 Inowled,7,e, and above it showf; how

'70
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the subject gives cl:rity and understanding to all other

branches. Further, it develons a tool for genuine use for

all those who continue their study of mathematics and

science. How this geometric study may be organized in some

structured wry that unifies the various aspects with the

'large' mathematical structures is shown in Figure 3, the

center and left hand columns.

Probability and Statistics.

Advances in science and technology have made it necessar

to include new topics in secondary school mathematics

and science. Probability, in its contemporary setting is

ono of these topics. Today, the educated citizen must

understand the concepts, language, interpretation, and

application of this aspect of mathematical knowledge in

order to carry on everyday affairs intelligently. The

following sequence of instruction is one frequently cited

for the secondary schools.

1. The emnirical background of probability theory

through the exhibition of statistical regularity in every-

day lif, in nature, in games, in science, etc.

P. P. development of the mathematical theory of probab-

ility.

"=). A host of: :,nnliction of this theory to the des-

cription and prediction of random phenomena.

4. A brier overview of the historical development of

the theory.

7 1



To meet these goals requires a continuous development

of the 2ubject fro. grade 7 throur01 senior high school, as

its concepts are developed icrelation to, and along with,

the corresponding set,algebrai . and geometric study that

is needed. Using both a-priori and a-posteriori procedures,

the subject starts in grade 7 to build the empirical know-

ledge of outcome, outcome space, trial, event, relative

frequency and probability mure. The gathering of data

and the study of the _stribution of outcomes leads to

graphical representations -- histograms and freeuency poly-

gons -- and the measures of central tendency and dispersion,

for example, the arithmetic mean, mode, median, range, and

standard deviation.

At the i-lext level of instaction, the study. can be

related to sophisticated counting, tree diagrams, permut-

ation, combinations and the binomial distribution. From this

empirical and algebraic study, a formal set of axioms can

be abstracted to define a probability space with a probability

measure. With this elementary treatment which relates

events to the simple set theoretic algebra of union, inter-

section and complementation, a host of interesting and

genuine problems can be examined.

The culminating aspect of probability study for the p;reat

of student:; lies in its extension to conditional probability,

opt of: which ti ;...1c:J; of dcpc:Ident and independent events

can be drawn. This leads to the consideration of random

7 2



variables and expectation, two ideas that are pervasive in

the affairs of modern living. All this knowledge can give

genuine and necessary insight into insurance, lotteries,

and aPplications to biology, genetics, and physics that

abound in the daily T.ws and affect the behavior of every

citizen.

Further study, for those with interest and ability

can be spent in examining independent and dependent random

variables, Markov chains, transition matrices and mathematical

distributions. Problems properly selected, can show the

wide application of probability theory. In the last year,

with the tools of calculus at hand, the extension to con-

tinuous probability can be made. Here one sees the funda-

mPntr?.1. ideas u,!0Pr1.ying thP usP of rolls, sr4mpling, anrl

quality conti.ol techniques.

It should be evident that this program in probability

and statistics should not be presented in isolation from

the other parts of mathematics and it should not be deferred

as a separate study until the last year of secondary school.

This is too late for by this time many students have left

the study of mathematics for other interests. Unfortunately

some of these other interests, sociology, economics, business,

.Dor example, now require an elementary knowledge of pro-

bbility .;tati:3tics for their comprehension. hut more

li7)ot nt s the fH.et that prentinc: the mabject as an

integral unified p.q't of all the rest of mathematics lends

7
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efficiency am, ,1;eater understanding to the learning of it.

The CalcIllus.

Until quite recently, the calculus was considered a

university level subject of instruction. In order to study

the subject, students were expected to have acquired a

rather comprehensive knowledge of algebra, especially

algebraic manipulation, geometry, trigonometry, especially

trigonometric analysis, and coordinate or analytic geometry.

This expectation has changed radically, and good treatments

of the calculus now include the study of mruch that yes-

terday was considered pre-requesite.

It is true, however, that one of the reasons for knowing

algebra, coordinate geometry, and trigonometry is the basic

foundation they give for the study of infinite processes.

Here, in calculus, the student sees the total intersection

of all these subjects as a unified mathematics study. The

student also finds a great number of genuine problems

that can be solved by techniques of the calculus, but that

can not be solved by any D',.thematics previously studied.

The calculus is, in this a high point in the apprehending

of what mathematics is today, and wh-,t its power is in

the solution of problems.

The trif.itionl introdu-tion to calculus bcf;an with a

11:11t:. o cci'nce: Ibe exi:;tee

of a limit was tuf:;ht informally through the use of in-

equalities with merely a mention of absolute value/ -nd

14
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continuity of a function at a part or in any

interval was then defined in terms of limits. However,

the advent of metric topology has brought about a crowing

trend to revise the order of study of limits and continuity.

This emphasis on understanding infinite processes, as well

as being able to carry out operations involving these pro-

cesses, is the more recent approach to learning the subject.

The teaching of analysis can be strengthened in the

secondary school by preoaring for it earlier in the school

program. Tne following topics should occur early and be

continued ech year of study until the formal study of

analysis is introduced.

1. Since the first course deals essentially with functions

of a real variable, enrich the study of functions with a

study of circular functions, lo arithmic and exponential

functions, and special functions.

2. Faniliarize the student with approximate numerical

computation with problems leading to the solution x as lying

in the interval a .< x b or in the form of an estimated

error lx-dl

3. Place importance on the manipulation of inequalities

with absolute values.

4. Introduce linear interpolation either as anproxi-

mation to a function value or to replace an inco:mletely

func'Gien by a piecewise linear function.

:;tr M a:11 toachinr; hat the real number:;

7
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ordered field with propertie:, (..refully, but informally

stated and tested.

6. By introducing a concept of "distance" in the

topological sense show several different distance functions

by means of definitions that can be intuitively sensed.

The study of analysis itself begins with that of con-

tinuity and limits where the limit of a function at a point

is the v.:lue to be given to the functiol xt this point in

order to make the function continuous at this point. The

intuitive topological concepts of neighborhood, open and

closed intervals, and deleted neighborhoods enables con-

tinuity to be defined in terms of& -neighborhoods of the

domain associated with 6-neighborhoods of the codomain --

first at ct point and -H-,en over an intelwal. The limit of

a function is then deflned in terms of continuity and not

in terms of a sequence.

The derivative can be introduced through linear

approximations to a curve at a point -T1d this also leads

to the differential as a linear mapping. The study can

then follow the traditional seouences leading to formulas

for diffcrentiation, derived functions, and applications.

The notion of primitives c%n be introduced inrormally as

anti-drvativcs. Intor;rrtion c-n be introduced indeoendently

or differenti tion n.s a sollltion to a uroblem of measure.

moCion nesenten e;1.ns. with : of riccewisc

monotonic -;-Lep functions on which one constructs the cl:!ssic,-:i

7 ti
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rectangles which enclose the bounding function between two

step functions. This leads to the Riemann integral. The

fundamental theorem of integral calculus follows, along with

all the clssical techniques of integration and anplication.

We now see analysis, as described in this section, as

an indiscriminate user of all the fundamental ideas of

number and space as it deveions its own unique procedures

for the study of infinite processes. In modern society

the concepts and apnlications of analysis are of great

use not only to scientists and technicians, but to the

educated citizen as means of understanding what is hanpening

in our scientific-technological culture.

7 ,1



69

Numerical Anlysis and Computers

Perh-Ts the mot strikin,7 and far reaching technologicr.1

development of our age is the digital computer. The first

commercial electronic computer, the UNIVAC dates from 1950.

Today there arc thousands upon thousands of highly efficient

computers that have completely transformed the modus

operandi of business, engineering, and science. Theil" use

is literally changing the culture of world societies. It

thus becomes socially necessary that all future citizens

know the nature, purpose, and use of these machines, that

there is no magic in them, and that while they may appear

to perform miracles, they can do only what man tells them

to do.

People must bc educated in a cultural understanding of

these machines. Also, a host of millions of workers must

be prepared to program them by the proper use of computer

languages. In addition, a large group of scientists and

researchers will be needed who must have a far more extensive

knowledge of the mathematical and electronic theory of the

construction of computers. The use of the computer as a

learning tool is growing, and its use demands a deeper

understondins of algorithmic processes, as well as newer

constluetive theor:,_es as used in the solution of all kinds

of equ,tions, in linear programming, and in evaluation of

,In ou.!, iry,-bnic'Gion returns to

analysis, but with more general and deeper methods of

78
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obtaining particular numerical rnsviers.

This study should begin erirly in school instruction,

no later than grade seven, by making flow charts for simple

arithmetic calculations, that is by understanding an al-

gorithm as an operational process. These simple processes

applied to the study of real numbers and measures, lead

also to an understanding of the nature of approximations

and errors. As soon as possible, flow charts should be

programmed by the study of simple computer languages, of

which a number are now available. As soon as a computer

is available, by itself or through a console relayed to a

computer center, programs should be carried out and applied

to all the current study in mathematics -- this means prac-

tically all mathematic s s Ludy iuiv olv ing nuulleric al or logical

answers. The computer should be used to solve all types of

°problems, for example: systems of linear equations, systems

of linear inequalities, probability problems involving

simulation, problems involving matrix operations, solving

polynomial equations,derivatives and numerical integration.

For example, instruction in the theory of equations is

shifted from the classical processes to newer iterative

methods for isolating and approximating the roots. The com-

puter and its accompanying instructional material, again

serve as a means of unifying thc branches of mathematics.

79
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Lcy-j. .

In the trditiona1 program of high school mathematics,

logic, as a separate study, held no place. It was limited

in its use to the study of geometry where axioms, definitions

and demonstrations were used as means to initiate students

to formal presentations. The analysis of sentences was

usually limited to those of the form of an implication:

If -- then. The use of bi-implications "3.f ana cnlv if,"

or "necessary and sufficient" -- were seldom if ever mention-d .

Likewise the uce of the quantifiers "for some A" or "for all

A" were never mentioned in stating theorems or propositions.

If the purpose of geometry was to teach the use of logic,

it did not succeed in doing so.

foormal mathematics, structures on seus, axiomatics,

and demonstration, requires the explicit use of logic. How-

ever, the degree of formalization and symbolization found

in mathematical logic is more than is needed by, or within

the maturity and experience of, the students in secondary

school. Further, the logic that is essential applies to

all parts of mathematics -- number theory, algebraic

structures, geometric systems, analysis and applications.

It must be sufficient to give pupils a correct and usable

concept of axiomtic structure, definitions, and methods of

proojf. Its nain use is that of a tool to check the correct-

nes,s of' oriel; thinMn. it has aittTh or nothir, to do with

the creative or discovery aspects of learning mathematics.

8 0
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After the student has had a good amount of informal,

inductive, manipulative thinking about basic mathematical

topics -- number theory, groups, geometric
relations of

figures in a plane, probability situations, and the like--

it would appear reasonable to spend some time putting

these topics into an acceptable structure.
To do so requires

a basic knowleclp;e of the elements of logical structure.

This structure can be built up as the study of mathematics

continues,
but its fundamental

ideas must be initiated

early in the secondary school program.
While the use of

logic per se is not limited to the study of mathematics,

and certainly occurs in everyday life situations with the

use of the natural spoken language, yet for clarity and

precision it should be related to mathematical situations.

The initial use of connectives
"and", "or" and negation

fl not" can be taught in connection
with sets and operations

on sets. Here, also, one can teach the precise use of

logical words "a", "one", "some", "each", "every", "all",

"the", and relate them to the phrases they modify by the

use of the universal quantifier "For all

The sentential
calculus i- the most important for the

study of mathematics.
First one clarifies the meaning of

decLirr,Live
.;tatemr:nt

with its assined true or false

value. Then tlrouh the use 3f simple truth tables one

establishes
the truth values of imnlications,

and contrapo:Atives.
Finally all of the foregoing study is

8 1
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used to develor) several inference strategies which can be

used to test -- prove or disprove -- stated conjectures.

The indirect method of proof or contrapositive, loses its

mystery when it is subjected to this type of Jogical analysis.

The only symbols needed in all this study are

not and or if---then iff infer

Their use lies in the simplification of expressions,

not in formalicm. These symbols may be introduced gradually,

but once learned they should continue to be used throughout

the remaiming part of mathematical study wherever Proof

entevs. They are tools for common use in mathematics, as

well as in all rational thought wherever such thought occurs.

APPLICATIONS .

If the utility of mathematics is to recognized, we

must provide 1.]lustrations of applications of mathematics

in our school study of the subject. Beyond illustrations,

we must also, whenever possible, develop the ability to

apply mathematical theory and concepts to the solutions of

real problems in affairs of life. It is easy to show the

"tool" value of elementary arithmetic and physical geometry

in the everyday Lusinesc, and trade life of all

indi-:iduals. It LI 3)re difficult to E-,ce the hiir,her ur;e:;,

for eple the m;:thematicN1 exT)1ntion:; of :cientii:ie

8 2
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Phenomena as it occurs in physics, chemistry, bioloy, or

economics, or the way mathematical theory serves as a model

to explain relativity theory, or the structure of aA atom.

However, as we develop our study of mathematics, it is

incumbent upon Us to show its uses.

All "word problems" ,nay be considered as applied

mathematics, and this type of problem should, iilsofar as

Possible, reflect real situations -- that is problems

that actually occu. r in current life. These problems should

go beyond , example of the mathematics that has been

just studied.. For example, the axiomatic probability space

with a measure function is a model of practically all chance

situations a person faces cl.ay aftex day. The applicatibns

are enormous. enterinr every field of academc study. '1.'his

fact shou-d be continuously exploited throughout each yer.r

of study of mathematics. The teaching of calculus bring

with it the host of applications to physics and engineerin

that show the utility of the subject.

However, there are newer applications of more recent

mathematical content that are interesting and desirable.

Linear prara :ming offers simple, yet genuine examples of

the solution of linear incoualities subject to constraints,

which can be solved craphically, explained theoretic:!lly,

an,1 ploz,r=ed for electronic computer solution by the

simplex so .bod ±ho USC OC Sets and loic in developin': a
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Poolcan algebra that can be applied to :;imple eltrical
..ircuits is another newer application. In -act set theory

can be used, not only to explain mathel:latical systems, but

also tO interpret such political phenomena as voting co-

alitions and blocs. The anplications of groups and other

-.Icture are likewise invading the other disciplines, and

can find this for example in modern books on syntax

and gr-Jamatical constructions in lr.nguages. The alert

teacher will find and use problems from physics, chemistrY,

geoloFy, economics, space navigation and so on

becuse all L.hese f'ields make wic use of many areas of

mathematics r:nd rathematical thinking, that again reflect

the unified aspect of the subject.

UNTFIED CWn.LCUJW .

When one looks at the Bourbaki structure of mathematic

and the historical events leading to its development, one

can sense that the universality that unites so many brs.nches

into a connected entity is acquired largely through the

funamental use of ets, relations, and structures. With

this concePtion we can no longer afford to think of school

ni,lthematico as a collection of disjoint branches. The

r,chool. :::athe:711.cs :iuL-,t be newly con:trtr--.1, by oki usa

of all thli:; developi:,1,nt, '0-cooerl :::CioteCt to

'noses schpol

8 4



The foregoing partial listing of the content of

condary -chool mathematics shows to some extent the unity

_ mathematical study. A complete view of the inter-

:celaterjness however must come throurTh a comprehensve

study of the content and the manner in which it is tauTht

and learned. Figure 3 can help the reader to see to some

degree the way the entire subject is held firm by a central

core of fundanentalsand structures, for which both geometrical

and a]gebric relizations forf:1 the basis for all the math-

ematical activities derived therefrom. These activities

include the study a,nd use of operations within the structure

realizations, manipulating variables, expressions, and all

types of functions, the study of conditional sentences and

theiy :,olution.s, graphs and aprilieations, isometrics, sim-

ilarities, constructions, and other geometrical applications.

For efficient teaching and learning, the school

curriculum should be a unified as possible. The program

discussed above iir'y be described aS one that constitutes

an advance over the traditional organization by embedding

all of mathematics, traditional and new, into a contemporary

setting of the subject. The learning is designed to educate

our youth for orientation to change and to avoid anachronism

as they enter the university or the adult working world.

The goal is to provide:

(1) a conteporary viownoint of albro as a stud: of

structures, their realiztions in the several number systems,

8 5



and all the derived activities. It will be a body of

knowledge that includes much that is now in collegiate

programs. It will prepare students to bein a rigorous

abstract algebra and vector space study at college entrance.

(2) a modern viewpoint of geometry as a study of

spaces -- eventually related to the algebraic structure of

vector space. This is a point of view not available in

many college progiams today, but it must become the common

knowledge of all educated people.

(3) a unified approach to the study of mathematics

with the concepts of sets, relations, mappings, operations,

and structures "ninding all the truction into a continuous

spiral approach to learninz,.

() apPlications ma'uhematics, net only to physics,

but to new areas in the behavioral sciences, where probability

and finite mathematics are extlomely important, perhaps more

so than analysis.

(5) an inttive, non-rigoro, but correct intro-

duction to analysis via continuty and limits.

This program ?:ovides i;enuine liberal edu.i :,n1 in

mathematics as it is con-eived in the last quarter of the

twentieth centur,y. It forms a basis fc,r enterin the

college or univorsty r! the 1)_ndc:T±,Indite level for 1:1y

nrofes:jon-il study wiether in scivs-nce, enr;incrin ,

law medicine, ecc)r-Lc:1, c.:juncos, or in pure

mathemati.



78

While in its more severe form it is for stullts In

the upper 15 to 20;, of co nitive intellir;ence,

concrete and practical modification it is a pro(' u for

mass education. In ali of knerica today, whi t evident

in new] y constructed curricula, yet clearly discernible

in noli7.:-.1 social, and economic expressions, made

by the governip, business, and the public at large, there

is c,rowirE; a grcat conccfn for mass education. This concern

is usully e::.Pressed as equal educational opportunity for

all children, where equal opportunity is not construed as

eoual access as enual acouisition of knowledge.

Whether this is possible or not, it indicates, along

with the description by Lichnerowicz, that there is only

one mathematics -- the same fnr all peopip. "Ry prope,'

modification, with more concretization of abs.'- ct theories,

and presented at a slower pace, two-thirds of the proposed

program could well give a great mass of students intellectual

satisfactj and the knowledge needed to understand, and

to succeed in, a competitive technological society.

0 7



Chapter IV

THE WOEK OF ;',ViMCIS

It is a stimulating and exciting adventure to construct

a mathematics curriculum that will have a completely dif-

ferent organization from the traditional sequence. Here one

is allowed freedom of selection and structuring of the con-

tent, freedom to create new pedagogical procedures for es-

perimental classroom use, and is challenged to look ahead

to the needs of tomorrow. All Of these conditions contributed

over a period of nine years to a contini ells and unrestrained

enthusiasm that produced the Unified Modern Mathematics

textbooks, teachers commentaries, and technical reports

of SSMCIS.

However, it is another matter to report the work of

SSMCIS so that the reader captures the spirit of th.- hg.

professional interchange and creation of ideas tha-.: )

the final product. A report tends to become a une

activities in a summary form, dc:ioLk, the arguments,

disagreements, accordances, expect.f,' ,appointments,

elations, and determiniations of %it the persons involved.

This '-hapter will attempt to reveal not only the modus

operana but also some of tne elan that mad,: the adventure

=, successful one.
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Initial Procedures.

By June 191-4, mathematdcs curriculum construction in

the U,S.A. had reached a ciiJIx in the work of the Com-

mir-,sion on Mathematics, the University of Illinois Committee

on School Mathematics, and the School MathematLcs Study

Group. All these groups made their reforms within th._:

framework of the traditional organization of year long

studies of the separate branches. The only contribution

beyond these three movements was that in the proposals of

the G:imb:ddge Conference on Goals for School Mathemati.cs.

however, during the riod 1953 to 1964, Europeans were

comitted to radical reconstruction of their mathematics

curricula based on recently developed movements in mathematics

itself. Among these were the School 1..ithematics Project

in England, the work of G. PaPy in Belguim, the new curricula

of the Nordic countris and the work of Kolmogorov and Mark-

ewschevicz in Russia. The European thinking h.d. failed to

interest any of the reform grourzin the U.S.A.

Accordinly, in October 194 a proposal ls made to

the Federal Ufice of Education, for the support of a pro-

ject to construct an entirely new organization of mathematl:cai

study for the school yea.x.s seven through tvelve to begin in

school year 19-,5-1. The objective, as stated at that

time was:

ir proposed to construct a new detailed syllabus

8 9
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for a unified program of mathematical instruction,

largely algebra oriented, for the secondary school

years, grades seven through twelve. This syllabus is

to encompass all that is now considered a first year

university program. From the syllabus it is proposed

to write comolete textual material for pilot class

experimental teaching by scholarly and specially

trained teadaers. Concomitant, it is proposed to deter-

mine the teacher education in mathematics and mathem-

atical pedagogy necessary to teach the new progrm,

and to develop tests and testing techniques to

mine the mastery of the materials to be taught. In

effect, the objective is to realize part of the "Goals

unefor sch :athematics" recently develoT)ed

Cambridge Conference, Jur, 196

There is a great difference between the U.S.A. updating

y1;e of reform and one in which the entire curriculum is

reconstructed from a global. point of view - one which

elimintes the separation barriers among the several classical

bl-anches, unifies the subject through its general concepts

(set, relationsoings, functions) and builds the funda-

mental :tructures (group, rig, field, vector space). The

efficiency gained through such organization (and the e1i7niin-

ation of outmoded parts of the subject n permit the

introduction into tie high school pro: much that was

1:reviously considered undergraduate mat, ,iatics.

9



In order to initiate the project, it was proposed to

bring In the thinking of European as well as U.S.A. math-

ematicAans, all of whom would be committed to the construction

of a modern unified secondary school program for the

scientific line - those students coPrising the upper 15

to 2C of cognitive ability.

The Office of Education after receiving, the proposal

favorably, sugc;ested some modifications of the procedures

bud provisions. An amendment to the original

propost 1:7,s made on March 9, 1:-5 and the inauguration

of the project was delayed by one year. Appended to the

proposal was a section of the OECD report of the Athens'

wor:;:ing session on Teachin,g Methods of School Mathematics,

)tr)
4- ,

t,t AssiE;nment of .:FA,thcatical

Subject-, M.ter ,Cor Scient ic Sections of Secondary Schools.

This appendi:: formed the 1,asis for the initial work of the

projeet. Final approvh1 was given to the proposal in

September 1:5, the initial phase to operate for one and

one-halC years.

The Project CoMmenees

Since the operation:1J scheme of this initial one-at-J.:-

one-haJf years phase set the state for all subsecuent years

of operation, it is reported here in some detail. Many

(1)

(l) A Guide for Teachers. OECD. Par:1s, l51;4.



croups worked coopertively. First there was an

Advisory Council af seven lcadin matnaNaticians nd educrs.

This Council held. iLe f_rst conference in December 1(?()5 in

a two-dfly sesion to prepare the material for what become

an annunl June conference. I. second group consisting of

approximately twenty mnthematicians, educators, and teachers

held a two to three week conference each June for seven

consecutive years preparing a d syllabus for the

following, year of experimenLal At the June

conferenec the sco,)e and seeuence rx: the study wore put

in sufficient detail to permit the writing, during the

summer, of textual ma;-erial fo:: classroom teaching dur:n2;

the folloing seLecAl year. A third group were the summer

writers wh(,, OuT'i (r the moeth r July anJ August., prduaed

the student te::tboos for the experimental teahinr; in the

next school year. Each chanter written by one person

reviewed by another writer and also by a mathematician from

the June group in order to check its mathematical corrcet-

ness, its pedagogical soundness and its agreement with

the June conference proposal.

A fourth groun consisted of resarch assistants and

typist:s who erepred the te::thoo1cmanuscrintn for offset

A.,_ter each pa-;e was checed end the figures

drawn, it :;s, furt n edited by :,leyer Jord-ln,one the the

conult-,nts. His '.:-rel'u] wer yenI aftor ye.:f

not only elimin-ted erra, but insured car-ful renhr:Isinj,



of much of the writinc; to make it more readable as well as

correct. The complete boo?n3 were ready for classroom Use

at the start of the school year.

A fifth group consisted of U to 24 classroom teachers

who, in each successive summer took an intensive six week

coure of 100 hours of study in both related subject iatter

(as a background) and a pedafyDgical interpretation of the

curriculum they would instruct during the coming school

year. During the first year of classroo :-xoerinent-tion

with each course there were two teachers, ins the clpssrocm.

Thereafter the u,!ual one teacher to class prevailed.

These teachers were tauht by highly competent profeLsors

from group two above.

A si.i,th iy.coup -oere sL.J.dehL6 selected to stuav tne

program. All students in the pro[;ram were allowed to

elect it or to remain in the trditional classroom. The

sbuiui.a were selected on the basis of their elementary

school achievement, a standrdized mathematical test score

and an intelligence test scol'e, to insure that ey would

be in the upper 20: of intelloctul ability.

A final group consisted of the director, research

assistants and selected rembers of the adlrisory Council

who throuhout the year observed the classroom teaching,

conferred with the classroom teachers nnd students, ad

during the year held fml.r all-day :!,turday confeences

with all the teachers 1_,:olved in eyneriy;er,tal techlhf;s.



The overlapping of membership in these groups, conduced

to an underst,ndin of the problemn and difficulties in

!(.1apinf the textual material to student learning. All

groups students, teachers, writers, e(Thcatorn and math-

ematicians held respect for ea( other and all

liL;tencd attentively, thouTh not always with a grcoment to

the csiticinms, suL;gentions and desires of each group.

It was thin high le\cl of cooperativenenn and willingness

of copromine in controversial areas that led to the

successful dev-elopent of the prograrn.

The pfltj-crn thus set became the modus operandi in all

the successive years 1967-1972, namely

a) A late fail or early winter Advsory Counc.il

cc.nferencc,

b) A winter and early sprinr..; of preparatory work by the

dircctorn office.

c) A dune plannins: Conference of the syllabus, 2-3 aeciks.

d) A sumr-writing and producing textbooks, 2 months.

c) A su=er training pro7:r?rn for 24 teachers, 6 weeks.

f) A year of c:.:peri-,mtal teachin7), obserwtion, anc',

evaThation conferences.

-J_C!

Lur: Ada a ciry dourLefil wan hel.d

r.t tk in 1:!crinT. ware

neid in

t-1'P srh '1 C, co:c aL th f.(1y11ory Coeil
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120 tin was the Dreuardtn of a nosltIon pDer,

it was aree d tht a position paper should be one

that would . with a minimum of debate or discussion, serve

as a bas.ls for the work oC -11 subsecuent colif(rences. Amon

other items, th- position paper stated

a) The pre-r,ble to the research F:rant statin(:, the

objective of the cperiment. (See p:200 80 )

b) TLe basic knowledu:e expected from crades K-(

stud7r on the Dart of the entrants to thc exnerimental clHsses.

c) The objectives of the stu(y of hii:h school mathematics.

d) The scone and sequence of the sbject matter to

n taur;ht.

e) The [;roup of students for whom the airriculu!n is intended.

_f ) The trnd eu:!.iii,y of Leacirs in the proram.

stahd we shall take with reE;ard to u,eometry

instruction.

h) The presentation of number theory and polynomials,

as well as an early introduction to the calculus.

i) The nature of ev.Auation of the curriculum - the

preparation of tests.

j) :eet controversy that miv;ht be expected, with

reso COMD=IL:e.

'1.21 ti:c2 paper should attan)t to

avoid Lhn us,necer.r., 1.1:;e of :(-)hi,;ticate,,I, lan:;uar;e.

tbe :;11!,(!ytion . prer.H.:n7 thr. thL fDllowin.;

reIrk:;



V)7

"I thinl.: that wn embhasise the concept of

Lransformat ion )

in alf-c.hra, r,eometrj, and analysis, treatinr, f:,1.!-;ebra

as the theory on onetThdfl and enlphasi7.inp., (:rouns

and homomornhisms. In f;cootry I think we should dvelon

the conr.!ept of tr:.nsforn-tion (operation) and

use it systematically as a tool in makinir, c;eosletrical

constrIletions and coo:iletrical proofs. As for axi oc:latic_

(-ometr:.- atn convinced that we should foi Aitin

(-nor the afTine structure) and Chocuct (for special-

i:!,stion of Euclidean 7,eomet-i'y). The theory of real

ers ymuld be develoned on the basis of alzebraic

ceo:.letric rea ults an0 should not be divorced from

F,cstry Of ._LI1117 Dr:TAC:fatil iritG thC for

c;eometry.'

"We are writinu., for a hi hly eap:ble and interested

body of students. At a subsequent berlod, after the

initial experiment, we can consider what modifications

would he made for the less capable. The classes must

be taujit by hir;hly capable and well-trained teachers.

There must be no bindin2; whatsoever to any traditional

pro:7am. We are free aents, r!nd shold not attempt

to 1:-!odir the pro=, to rdmit students at a subsccuent

havc not pursued the e-mer.imental ur.sram.
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"To evaluate the experiment, we should not attempt

control against a traditional achievement test. We

should develop new special tests, which test the aims

and objectives of the material to be taught; which test

concept development and related problem solving, as

well as the acquisition of manipulative techniques.

We must use teacher reports based rn questionnaires,

interviews and attitude measures."

"Elementary Number Theory should be included in

the program. It goes a long way toward developing the

concept of theorem and proof, which traditionally was

ascribed to teaching geometry. In this connection the

role of proof in the program should be spelled out.

Are we to teach formal mechanical logic, or to develop

thinking about proof? Informal logic ties up nicel;

with set theory. First proofs should not be of the

oIrrious, but of unexpected results."

"We must take a firm stand on geometry. It should

be headed toward coordinates and vector spaces. One

purpose in geometric instruction should be the develop-

ment of intuition. While the Pythagorean theorem is

important, there is a great deal of pre-mathematical

value of relations in a plane which can be introduced

without a f:omal proof, to give the notion of wh:zt a

plane is like."

9 7



"The limit concept :Ind steps toward the calculus

!liould be spelled out so that ideas of the calculus c.n

be introduced early. Thus continnitv should enter

the p:.c.)ral at an early stae ii emphr&sis is to 1.yc

placed on ol)ertions and tr::.nsformations,
then notions

of mnppins, relations.
functions and permutations

should be stressed. iluerical P.nlysis should thus

be introduced before thr Clculus, and not be delayed

until after te Caiculus ls t!q1;7,nt.

BY 'ly J. , 19 ,C, not orOy was rn acceptible position

paper co.noiled, but also a dot-iled flow chart Ind been

prepred by Professor Vincent 11-, showinG the possible

contcl-it QC
d.;strilJutd OVC:.Y the -ye;trs (-)f

study from Gr:Ide 7 throu,th [;r:Ide 12. These two ite=set

the strT;e for the June r - June 26 conference (i 1:: workint;

days). The wo-0:: proceeded as f'ollous.

day: Discussion_
rendl)ent and aGreement on

the position naper and flow chprt.

Second day: Discussion and det.))ling of content with

respect to Grades seven and eic,ht, that is, Coures I and

IT.

Third to fifternth day: 1.Tcsrii4 ion of det:illed

as follows: Total proram, :=; 6ays; Detailed syllabus for

Grades
(1-!:/: 0.:oh; :;(10-pc and

sceuence of Courc

9 8



by chapters, 21 days.

Sixteenth th.y: Sequence and scope by ch-mters and

topics for grade 7 ond P.

Sevonteenth daf: Detiled chfTter ou.tlines ::nd assign-

ment of writers for Course I.

Eighteenth day: Evaluation and procedures for extending

the project in subsequent years.

Each writer reviewed his assigned chapters with the

m')thematician who

chanter, in order

was principally engaged in developing

to have complete understanding on the

the

objectives, nature of presentation, tyoes of exercises. and

general format of the chapter. At adjournment on June 25

everything was set for two months of intensive Preparation

or the actual

The persons who took oart in the Advisory Council and

June planning conferences are listed in Appendix A.

Experimental Sch')ols, Writing, Tencher Training.

The Metropolitan School Study Council is a collaboration

of about 125 school districts in the New York metropolitan

area. Twenty of these districts were selected as possible

places for the SS:.ICIS experimentation because they hd a

relatively stable population, sufficient number of academically

capable students. and teachers favorable to attemptiiv new

n)'.te-rIJ. 1y clime 1, (2; di:;trictr.. (one with two junior

111:n hools) lceepte.d the invitation to experient in

9 9
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the project. All of these districts, with the exception

of one at Carbondale, Illinois, were in close enough prox-

imity of New York City to permit classroom visitation and

observation by the SSMCIS staff. The textbooks and teachers

commentaries were supplied free by the project.

Office space and library facilities were provided for

the wr.iters. This made it possible for the writers and

reviewers to work at home, in their personal offices, or at

Teachers College, as well as to keep constantly in communic-

ation with each other. At regular intervals all the writers

convened in a plenary session to raise and answer questions

with regard to sequence, repetition of the same material in

different chapters and to omissions that would handicap

tae teaching of subsecuent topics. These sessions also

acted as a time-guide on completing the writing so as to

have the textbook ready for the opening of school in

September of each year. Each course, from the beginning

contained two or three added chapters so as to be prepared

for any misjudgment on the amount of material that could be

learned in a given year of study. In subsequent years, as

adjustments were made the revised courses contained only

those chapters which could reasonably be covered in the

regulnr school year. The exercises in the textbooks contained

a sufficient n=ber of more challenging problems to accomodate

the students who could cover the course in less than the

expected time.

100
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The training of the teachers to teach the unified

program w:%s at flrst a difficult task. In the first place,

before their surarnor training began they had no notion of

the nature of a unified program. The ideas of sets, re-

lations, mappings, and matrices had never been in their

traditional training courses. They tended, as teachers in

general do even today, to teach the same subjects in the

same way they were taught. It was difficult for these

adult experts to adjust to new concepts, new operations,

and new organization of the subject matter. In the second

place, it was difficult to adjust to new goals or outcomes

to be expected from their students. With greater stress put

on conceptual teaching and with less stress on memorizing

stereotyped operational algorithms, a new pedagogical app2oach

to learning had to be acquired. In the unified program,

learning by discovery, exploration, seeking patterns and

mddng abstractions and generalizations from situations

called for a larger share of intellectual activity on the

part of the students.

It was necessary then, that the instructors of the

experimental classroom teachers be selected so as to exhibit

the same characteristics that would be demanded of the

experimental classroom teachers in handling their students.

:iortunatcly r,uch professors were available, one of whom w-ts

an internationally outstanding educator in mathematics,
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Professor Willy Servais of Belgium. He demanded a high

degree of scholarship, rigor and comprehension in his

instruction, while showing great sympathy with the mental

strNin to which his teochers were put. Year aftev :year

he wen their confidence and respect as he molded them from

junior high school teachers into senior high school teachers

by presenting university level unified mathematics for

thei study.

Besides the advanced mathematical knowledge, it was

necessary to develop wit.hin the classroom teachers a peda-

gogical theory for presenting the new unified concepts to

their students. There was a real need to break away from

traditional goals and methods, and to establish new targets

through the 112c of the textbooks their students would use.

The teachers had to study the texts and work all the exer-

cises which in the following year they would expect their

students to do. Among the writers, there were several

college professors of mathematical education who year

after year in the summer teacher training programs develoned

the theory of inquiry, learning by discovery, examining

situations, and the building of strucutral concepts.

It was in this manner that the SSMCIS brought about a

dual reform in mathematics education: (1) complete reorgan-

ization of the scope and seauence of mathematics to he

learned so fls to conform to the late twentieth century
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concept of Uhe nature of the subject, and ( ) complete

switch around from purely skill-centered learning, lerning

on behavioristic and rote memorization characteristics, to

one h;ised stron:ly nn structured and conceptual apnrorT'hes

to learning.

The foregoing account may make it appear that every-

thing ran smoothly and in harmony. This was not the case.

Many times there were very serious disagreements among

the mathematicians, between mathematician and writers,

between writers and the classroom teachers (and presumable

between teachers and their students). These differences

had to be resolved. Thus there was a difference of judgment

on whether to present a topic in rigorous and formal style,

or to be informal, but correct; there were quite conti-

dictory view-noints on the teaching of logic-truth tables

for example. Thc affine geometry program was at first

considered too difficult by the teachers, but by the third

time of teaching, it was accepted as a first rate mathematical

study. The teaching of the calculus brought into clash

three opposing theories - the traditional limit approach,

the use of infinite series and annroximations approach,

and the continuity-first approach, the last of which was

agreed upon.

The approaches to topics were correct, and could be

made rigorous :15 desired. ut pedagogically, to the
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extent that it could be determined in these experimental

classes, some approaches were more suitable to certain

age groups than others. For example, during its first

year the program attempted to develop a fairly rigorous

approach to the integers as equivalence classes of ordered

pairs of natural numbers. At the end of 4 weeks of teaching

the students (oge 12 years) were still mystified. The

next year the ritegers were introduced informally by motion

on the number line and in two days the students were operating

on them in a me-i.ningful manner. Again it is apparent that

mathematics is indeed 3 discipline but mathematics education

is not. It is a practical and theoretical study of what

to teach and how it can be effectively learned.

The proccidure described above was repeated each year

from 1966 to 1972. The first year was given over to Course I,

the second year to revising Course I and creating Course II,

the third year (19'.8-69) to finalizing Course I, revising

Course II and creating Course III, and so on. By 1971,

the first three courses were in final form and placed in

the public domain, by 1973 all six courses for gracles 7

through 12 had been established as a superior program of

mathematics for capable students. The title of these

tests is Unified Modern :4athematics. A chapter by chapter

list of contents for each course is given in Appendix B.

1 0
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Evaluation

The success or failure of an experimental program

cannot be based on observational judgment alone. There

must be some form of testing outcomes against pre-determined

targets. Since the explicit goals of SSMCIS differed

greatly from the traditionally oriented programs, it is

evident that the use of standarized tests in algebra and

geometry would not provide the measures of attainment

expected of SSMCIS students. It became necessary to create

tests geared to the content and goals of unified mathematics.

These tests were used for two purposes. The initial

and continued activity was content-formative in nature, that

is they were used basically to improve the product of the

project. These tests were constructed by the staff of

SSMCIS with the help of the classroom teachers, and adminis-

tered at the end of each unit or chanter of study. These

tests revealed the difficult material, the easy subject

matter, the needed revisions etc. and aided in making the

revisioms of each of the courses.

After three years of experimentation a new phase of

testing - summative in nature, that is assessing the (Duality

of the outcome - became necescory. In 1969 and 1970 the

students were enterin7, the senior high school P.nd

compotin7, with students in the established adynced pl-Ice-

ment programs. They were obl]ged to take the Collec;e EnLr.)nce
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Examination J:lord Mathemtics and Scholastic Aptitude Tests

as well as Reu,ents tests if they were New York State student.

The New York State Regents cooperated by allowing the SSMCIS

staff and teachers to create a special 10th year Regents

Examin.2.tion. The results were excellent and the next year

(1972) the Mathem-..tics Dep:!rtment of the N.Y. Regents

worked with the teachers of the SSMC1S program to create a

10
th

and 11t h year test in unified m.Lthematics. Again the

results of the tests were excellent, and dn fact so high

in quality that beginning in 1973. all teachers of SSMCIS

clam:es in 1:ew York Ftate were allowed to make their own

tests, to rate theta, and to give Regent credit to all

students doing satisfactorily on the tests.

To determine the ability of SSMCIS students in C.E.E.B.

examinations, the SSMCIS staff, cooperating with the Edu-

cational Testi.,g Service's Mathematics Department undertook

three studios: (1) the administration of a pre-test form of

level II Mathematics Achievement Test in Spring 1971; (2)

the administration of thrl Preliminary Scholastic Aptitude

Test, Mathematics Section, in October 1971; (3) the com-

parison of 339 ss!ICIS llth grade students with the same

number of comoarable advanced placement group students

taking the PSAT in the Pal] of 1972. In all three studies

the SMCIS students had su-ocrior esiats, in the last one

at the 0.001 level of confidence. All the foregoinrr, evaluation

proved the quality of SSMCIS projram. It enabled our
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students to compare favorably on t 'aditional type examinations

with superior students who had received a traditional high

school mathematics education. In addition the SSMCIS

students learned a great deal more mathematics that is

not as yet included in CEEB examinations.

The question of arithmetic computational skills may

take on a new interpretation with the advent of the electronic

mini-calculators. However in 1970-71 the Stanford Advanced

Arithmetic Achievement Tests were administered to SSMCIS

and comparable non-SSMCIS classes in grades seven and eight

in Montgomery County Schools of Maryland. Using pre- and

post-testing, gains were found for all students but gains

favored the SSMCIS students. Thus the stress on concepts

and reasoning showed no bar to gaining requisite skill in

computation. The quality of the SSMCIS product was validated.

Alongside of the cognitive aspect of development in

school learning, there is always the affective domain that

is to be considered. Right from the start SSMCIS was

concerned with the attitude of its students toward the sub-

ject in general, toward the courses (books) they were

studying, and toward the type of teaching they were experiencing.

The difficulty of measuring attitudes was recognized at

the start. At first there was concern for the formative

aspect. It was necessary to present tnose topics that

students liked and in a manner that attracted their interest.

Capitalizing on this, it would be easier to present that

mathematics which was essential for further application and

further study.
107
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A preliminary Student Opinion fturvey (SOS) was developed

and administered in all experimental classes in 1969-1970.

The test contained the flollowing section: (1) a list of

chapter headings in each of the Course I through IV for

which the students were asked to rank the three they enjoyed

most, and the three they enjoyed least, (2) a set of state-

ments concerning the courses and the textbooks to be rated

agree or disagree; (3) a list of statements concerning at-

titudes toward mathematics to be rated 1 to 5 from strongly

disagree to strongly agree. The results of these .tests

enabled the writers and teachers to see the relative

judgments of the students' affectation to mathematics.

During the year 1972-1973 the original SOS was modified

for readministration to both 8SMCIS classes and non SSMC1S

classes. Two forms A and B were constructed of items used

in the original SOS, along with items from Aiken's Revised

Math Attitude scale and the scales used in the International

Study of Achievement in Mathematics. The test was administered

to 1160 SSMCIS students and 862 non-SSMCIS students in

accelerated classes. In general, there was no difference

between SSMCIS and non-SSMCIS attitudes toward mathematics.'

However the SSMCIS students appear to have formed a more

favorable and more mature outlook toward specific aspects

of the subject. In many ways, their viewpoint is more

modern then that of their comneers.
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The complete results of all the evaluation studies

appear as technical reports 1 through 14, issued by SSMCIS.

The conclusions permit it to be said that the Unified

Modern Mathematics of SSMCIS is well within the complete

mastery of the upper 10 percent of academic ability, and in

a somewhat modified form can form the basis of a mathematical

education for the upper 20 percent of mental ability. The

attitude of students in these courses is slightly more

favorable toward the subject than that of equal ability

students in the traditional program. It is significantly

more favorable to modern and structural aspects of the subject.

Innovation.

In a country with a strong central Ministry of Education,

introduction of a new curriculum is either impossible or

easy. If the ministry does not favor the curriculum it is

simply not permitted in the schools. If it favors the

curriculum it is ifftroduced into all schools by edict and

becomes the program of the state. All book publishers in

the state create a new series of publications to meet the

new curriculum requirements. But in a democracy with no

central or federal ministry, as in the United States of

Americ, introthiction of a new school program is more

complex ond djfficult. Even thou11 most states have a

Department of J.clueation, the dcpartments us.ually aet as

advisory agencies on matters of external management, and
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seldom if ever impose a fixed educational program on all

of their school districts. Each school district in the

U.S.A. (and there are tens of thousands of them) is a law

unto it: 'f in fixing the mathematics program for its

school constituents.

Most districts follow the programs set by the major

publishers of textbooks. These publishing firms, select

authors, or teams or writers, to produce a program in

mathematics education that (1) follows a national trend-

not too radical - that teachers will most likely feel at

home with and (2) will make the sales of the books and

required materials a successful financial adventure. Hence

introduction of new programs by publishers is a rare event,

all the more so since in the near past, a few publishers

have not been financially rewarded by such publications.

The classroom teachers tend to teach that content that

they were taught and frequently in the same manner in

which it was taught to them. Thus traditionalism tends to

be entrenched in school programs. Any innovation in school

mathematics needs the financial support of foundations

(or government) as well as the professional support of the

mathematical world.

A number of procedures were used by SSMCIS - Informational

Bulletins sent to leaders (about 1500) in mathematical

education: obervntion of the nroz;rn1 in action in the

experimental classrooms; informational conferences, lasting
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from 1 to 5 days, at various parts of the country; placing

the first three courses in the public domain, using NSF and

other workshops and institutes to train the teachers; cap-

italizing on large districts that were willing to show

leadership; urging publishers to use the material in the

public domain with their own team of authors.

Success in One School. ln 1966, SSMCIS invited a number

of schools on Long Island, N.Y. to participate in its

experimental prop:ram. The only school to accept was the

Alva T. Stanforth Junior High School at Elmont. The exper-

imental class had about 35 students. Every year, in the

spring, a Long Island Mathematics Fair is held for students

in grades 8 through 12. In 1968 the students from 7th and

8
th grades SSMCIS comPeted for entry among themy4elves and

the school entered 25 candidates at 8th grade level. At

the first elimination contest in Nassau County from 125 8
th

grade contestants 21 bronze medals were awarded and 16

went to Stanforth students. At the second eliminal,ion of

bronze medalists from both Nassau and Suffold counties in

a field of 45 contestants, 11 were awarded silver medals

and allowed to enter the final round. Ten of the 11 finalists

came from Stanforth. No school in the history of the Fair

had ever had such an,overwhelminrr, majority in the fin-,1

round. Thc winner of the final round, owrde0 the cold

medal was Ronold (;;;uartararo, a student at Stanforth. The

Monday following this award, more than 30 administrators

1 1 1
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from Long Island called the SSMCIS effice seeking admission

to the SSMCIS program. The program spread so rapidly

that by 1974, a full day SSMCIS Experience sharing Conference

was orgnnized and financed Person-11y by 425 teachers from

the three Mathematics Teachers Associations of Long Island.

The program is well established on Long Island and growing.

Information Conferences. From 1970 on a number of

conferences of nhort duration were organized to inform

superintendents, supervisors, ,?nd mathematics teachers of

the nature of the SICIS progrul, r.nd the needs aad manner

for innovating the program. At these conferences there

were lectures on the nature and purpose of the SSMCTS

program: class demonstrations of the teaching, the conferees

doing study and examples from sample textbooks, discussion

groups on what teachers must know, and the manner in which

in-service teachers could be educated to innovate the program;

and the like. The size of these conferences ranged from

60 to more than 100 participants. In all the regions

(except one) where these conferences were held, the program

has been introduced into some of the schools.

Large City Centers. In large metropolitan areas there

are opportunities to organize experimental classes with

qualified teachers for a number of reasons. Such areas

usually have one or several outstanding supervisors. as

well ,e nome te.:chr2rrl h11?y coNpetcnt in nIlbject m'Itter flnd

teaching skills. The student population is large enow;h
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to find a sufficient number of classes of the type reauired

for the new program. There are University Departments of

Mathematics and Mathematics EducatIon to which the city can

look for guidance and cooperation. These conditions existed

at Los Angeles, Philadelphia and New York where the program

has not only been established for the better mathematics

students but it is also being modified to adapt to a larcr

part of the student body. In Utah, it was a state venture

involving both North and South Utah districts.

Publication. The final editions of the experimental

textbooks were published by Teachers College Press because

the cost of printing was underwritten by the project..These

textbooks were published as paperbacks and at a reasonable

price (to recover Printina costs). However paperbacks do

not last well with student handling and hard cover books

are preferred by school districts. All the courses were

advertised to be given to the private publisher with the

best offer, but of 19 publishers approached none accepted.

All publishers praised the high quality of the program,

but were afraid to take the financial risk of publishing

the series. Only one publisher produced a limited number of

its own commercial rewriting of the first four courses.

Commercial publishers, in general, tend to pernetuate the

traditional and to avoid any radical change of their past

successful publications.

N.S.F. Institutes and School In-Service Workshops.
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The greatest source of power for innovation is a body of

knowledgeable and enthusiastic teachers. Since 19r8 the

National Science Foundation has supported summer institutes

to train teachers specifically to teach Unified Modern

Mathematics. In 4 to 8 weeks the teachers were given an

advanced mathematical background and a thorough study of

the SS:4CIS textbooks they would teach. When there were

no nearby institutes, or institutes were not available.

school districts established in-service workshops carrying

out the same programs as the institutes. Thus in each of

the six years 1970-1975, approximately 200 teachers were

trained to introduce the program into their classes. From

these institutes there have come forth well-trained persons

to carry on workshops in their own schools or districts.

Translations. The SSMCIS program has received attention

around the world. The supervisor of mathematics in the

Israel Ministry of Education requested permission to trans-

late Unified Modern Mathematics into Hebrew for use in his

country. As a result it is being used by the schools in

all major Israeli cities. When UNESCO began its Arab

Mathematics Project, it requested the use of Courses 1 to

III. As a result, the material of SSMCIS is reflected

in the new Arab program. In 1973 a group of 50 Japanese

mathematics teachers visited the SSMCIS for a full day of

briefing on our program. As a result Courses I to III have

114



105

bcen translated into Japanese and published in 1975 for

use in junior high schools in Japan.

Outstanding Teachers. Scattered throughout the U.S.A.

in each of hundreds of small school systems there exists

at least one mathematics teacher, well grounded in math-

ematics, responsible and well prepared for directing the

mathematics education of the system. These teachers attend

regional and national conferences on education and bring

back to their communities the latest and the best thinking.

There are a number of these teachers - in states across the

union - that have introduced unified mathematics for their

better students. The real hope for future innovations

lies in an abundance of such knowledgeable teachers. No

prograla, no matter how good, can succeed with ignorant

and uninterested teachers.

So, as of September 1975, there is estimated to be

about 80,000 students studying unified mathematics as

developed by SSMCIS. These classes involve about 3000

teachers. This is a relatively small number of students

compared with the number having the capacity to do the study

successfully. With an estimate of 10,000,000 students, the

upper 20Z would include 2,000,000 students in grades 7

through 12 all of whom could profit by the serious study

of mathematics of an advanced contemporary sort.By keeping

them in nn outmoded 7
th

and 8
th

r;rade program and restraining

them in a traditional algebra-geometry-trigcnomerty senior
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high school program from learning the mathematics they

will need in the world of tomorrow we are placing an

enormous block on the creative minds needed for the

future development of our country.
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Chapter V

MATHEMATICAL EDUCATION AS A SOCIAL ENTERPRISE

At every crossway

On the road that leads to the future

Each progressive spirit is opposed by

A thousand men

Appointed to Guard the Pass

Maurice Maeterlinck

The development of Unified Modern Mathematics by

SSMCIS has resulted in an educational program for the

upper 10 to 20 percent of academic ability, that is chal-

lenging and gains the student about two years in mathematical

maturity over the traditional U.S.A. secondary school

study. It is intended for a six-year sequential study

through grades seven to twelve. However, not all schools

are organized in a six year junior and senior high school

structure. There are schools with 7 or 8 years elementary

school followed by a four year high sclaool. The teachers

in the seventh and eighth year classes are frequently

elementary school teachers with little training in mathematics

beyond one or two years of alr;ebra and geometry. There if:

nced then to modify the SSMCIS program to begin in grade

8. or even in grndu 9. such modification, without loss
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of advance has been made in specialized high schools -

e.g. the Bronx High School of Science in New York

where the ability of the students is at a very high level.

There have been other successful projects for the

good academic students e.g. those at the University of

Illinois and the School Mathematics Study Group. Also

much attention has been given to the so-called slow learner -

the academically handicapped, the disadvantaged and those

who have had great difficulty with comoutational arithmetic.

However, in all these educational endeavors, the problem

of creating a viable and useful mathematics study for the

great majority of the students - the middle 60 percent in

academic ability - has been in abeyance. This might well

be the next significant undertaking for improving math-

ematical literacy in the U.S.A. European nations have

already embarked on this study.

Outside of business mathematics, the mathematics

curriculum in secondary schools has been dominated and

dictated by university entrance requirements. The only

consideration given to non-college bound students is to

teach this college preparatory mathematics (perhaps) at

a slower rate and with less accomplishment. The actual

neQds of these people when they enter the adult workin

and social world have never been investigated in a systematic

manner. For ex%mple they study algebra merely as prop:iedcutic
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to studying more algebra -- but where they will ever use or

need it, as contribuGing members to society, has not been

investigated.

There can no longer be educ-tional policy and goals

or mathematical targets for school teaching that nre apart

from the entire life of our culture. Political goals,

societal desires, industrial - economic demands must and

will have great force in establishing educational goals

and how they arc to be achieved.

some major issues are:

(1) Societies are looking uoon their people as a

reservoir of talents and skills, which are more widely

distributed throughout the popultion as a whole then

formerly believed. The schools are to select and develop

these abilities in all their students. The level of education

must be raised and will be raised.

(2) There must be a body of knowledge common to all

peop13 which forms a core of understandings essential to

good citizenship. There must also be opportunity for

Individual talents to be realized in their fullness.

(3) Our education system must provide for ch,prwe

clad reinterpretation. There must be built into our te:-.chcrs

ond their teching, ;:nd into the students and their learning,

nn orient,Ition to chnnge, so thr,t le:-Irning will continue

t1rou;ho)1L Lhc2 rc,st of tolr 1ivc!;, T1 .i5 1-is real 51plic-tion

for the type of special skills we tc:lch as opposed to thc

1 1 9
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development of conceptual thinking.

The forces compelling us to change and restructure our

mathematical education for the masses are:

(1) Demogrnphic: All children, in increasing numbers

are attending school longer. We must teach more mathematics

to a greater and more varied clientele. The learning and

teaching requir optimization for all students according to

endowed or acquired ability, with little or no failure.

(2) The expansion of knowledge requires selection and

continuous change in our curriculum. There is too much

knowledge to teach all of it.

The explosion in knowledge continues, but our ability

to organize it into the school curriculum has not grown as

rapidly. We need much more intellectual activity and

financial support in fundamental learning and curriculum

research.

(3) Education must be related to the outside world,

i.e. out of the school walls. Society with T.V , radio

newspapers, organization, etc. is a powerful educational

force in itself which we cannot ignore as we make our

school education programs.

(4) Scientific and technological developments are

transforming our societ1 habits, beliefs, and action.

Knowledge previously restricted to the academic elite,

is now demandPd by all persons. Social stratn are belnz

compressed into an ever narrowing band.
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There are shifts in educational philosophy that demand

a complete change in the manner in which we must present

our subject to the masses.

(1) There is a shift of conception of knowledge as an

exploration of a fixed pre-existing domain to the concept

that knowledge is limitless and capable of indefinite

expansion. Knowledge is creatable: This opens the field

for study (and research) to all disciplines -- especially

those previously forbidden by religious, moral, and ethical

authoritarianism of the past. It diverts the attention

from the mere accumulation of facts (information) committed

to memory, to a search for general principles and concepts

for processing problematic situations.

(2) There is greater concern for utility rather than

knowledge for its own sake.

(3) There is an increased orientation in education

toward the future rather than toward the past. Education

must be a power to bring about social, political, and

economic changes while continuing to conserve the important

traditional institutions.

(4) Trans-, multi-, or pluri-disciplinarity is becoming

essential as the humanities, science, and mathematics

unite in proposing and solvins problems of modern society

(ecology and pollution, for example). Such core, or

integration of ed--tive material is in its infancy. Thus,

not only must ou: cthematics become a cross-branches
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program -- one mathematic -- but mathematics and science

must be a more integrated program.

The emerging pressure of political, social and economic

desires of the people at large, the overview of how these

desires are related to what goes on in the schools, the

f,Drces of educational chance, and the shift in conception

and purpose of knowledge, all necessitate a procedure for

constructing. on a more scientific manner than heretoforr.2,

a purposeful program of common corc mathematics for the

great majority of our students.

Factors 'In Building a Curriculum.

With the foregoing issues as a background ,J7 an now

address ourselves to the problem under discussion -- namely,

what is the role of mathematics in the general education of

our youth? First of all we must ask what society expects

our schools to do. In the past many idealistic goals have

been set for schooling to accomplish, for example, our

graduates were to have achieved worthy citizenship, worthy

use of liesure, worthy home membership, etc. It did not

take a long time to learn that schools could not produce

tais product. But therc were fundamental objectives that

schools could obtn.in, most of which were effected by

intr?l1Pntv7a dcvelonment and formation. Thus the school's

main tHr:et is to develop literate persons, people who

can read. write, speak, and reason about life affairs, who
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in engaging in the "vie courant", and who have developed

the attitude and mental power to acouire new knowledge and

new points of view. We can today still maintain this goal

as the prime purpose of school education. It appears as

tenable for the future also.

Secondly, we should clarify what meaning we give to

the word "general" in referring to education. One meaning

of the word is "liberal" in the sense that a general education

develops a scholar or a man of letters. Another meaning

is "for all persons- as a "common body of knowledge" every-

body should possess. A thira similar interpretation is

that education which reveals all that permeates our cultural

domain. In rocont years, it has taken on a more or loss

vulgar connotation of education for the "less capable" than

college preparatory students appearing in such titles as

general science, general mathematics, general business

practices, and so on. It is suggested here, that the word

be used in relation to mathematics as that type of mathematical

education which the person who has acquired it will find use-

ful and operative in our society today, and insofar as can

be seen, tomorrow also. The word "useful- is used not only

in a vocational sense, i.ut also as an instrument for inter-

pretinr; and underst,tndinr; a scientifjc. technological, indm-

trial, and economic culture and the advancement of knowledc;e.

If it is so used. then .!,1-le word -general" takes on a different
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significance for each of several levels of intellectual

ability found among school children, and provisions must

be made to give that type of general mathematical education

best suited for each level.

Thirdly. we should investigate who decides what math-

ematics should be taught. c;:e could well investigate who

decided our present mathematics program and on what basis

it was done. Surely it was dictated largely by uriversity

mathematicians on the basis of pronaedeudic material for

the cohtinued study of mathematics. This happened when

almos,t ala. secondary school graduates went on to university

study. So 3 ask, for 'bilis group, what mathematics should

they study, for what purposes, and who makes the decision.

It should be noted that curriculum development is not a

cold, objective, scientific endeavor with correct and exact

content derived from rigorous research. On the contrary it

is an expression of social, political and pedagogical goals

in conformity with all the goals of the education process.

As such, it is greatly influenced by the value assumptions

of all persons involved in it. This is reflected in the

orientation of the developers as exemplified by their own

attitudes toward objectives and evaluation, and who they are--

mathematicians, psychologists, educators, generalists,

teachers, parents, ctc.

Thcrc r,;rowLn: ret'ncc by te-,,cher:7 to nceeptirr;

'new' curricula handed down to them by authorities from

above. All over the world, teachers are being swamped by
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new projects, and they are no longer satisfied to be at

the end of the production line. They want to be in, they

want to be heard. Where curriculum development begins is

a very sensitive issue, and it should be treated as such

by all those who claim to know how change takes place. It

must be admitted that there is no one way to make a syllabus.

No teacher should fear -- nor should anyone hope for -- a

technocracy of curriculum development that would threaten

the essential human relationship between a young student and

his teacher, who is for him the primary interpreter of

what adult society is demanding.

We can represent all persons involved in a circular

diagram as mokers, givers, takers, and users which returns

again to the makers. The makers, those who decide the

content, must be the pure and applied mathematicians, educators,

textbook writers, and generally those who know what math-

ematics is and where and how it is used. The givers are

Makers
Mathenaticians
Educators
Textbook Writers
Scientists

Givers
ler%chers
Supervizors

Users
Business World
University
Society-at-Large

Takers
Students

the school tec: -rs and supervisors Who administer the
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syllabus. The takers are our students who learn what is

presented to them. The users are society at large, the

busineSs-industrial world, the universities, and all those

who need mthematical competence to carry on. The circle

then goes to reform by the makers in a continuous process

that induces necessry change as societal demands change.

Goals.

All persons involved in the educatIve process must

sooner or later recognize quite clearly the goals, targets,

or objectives of mathematical study. This applies to the

makers, givers, takers, and users, although each o-P these

may see the goals in a different light or to a greater or

lesser deptn.. But no one can be genuinely motivated in

constructing, teaching, learning, or using mathematics for

which no reasonably accepted purpose has be,-a:1 justified.

These goals can be stated u,enerally,or as in behavioral

learning, objectively. In nost cases it clarifies our

thinking to have both.kinds of statements. Let me first

state three general objectives.

1. To the extent that it is possible for each individual,

all secondary school students (grades 7 through 12) should

learn to comnrehend the manner in which mathematics is con-

ceived of and used today. By the way we teach nnd what we

teach, the human mind should be developed in its cnpacity
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to understand and to interpret numerical, spatial, logical,

and probabilistic situations occurring in our cultural

milieu. When the students become adults they should ap-

pror.ch probles with a scientific end questioning attitude --

looking at a situation. seeking a mathematical explanation,

and possibly referring it to a mathematical theory. All

persons must come to know what mathematics is. as conceived

of in the last Quarter of the twentieth century, what ideas

and materials it deals with, what type of thinking and

reasoning (not only axicv.latics) it uses, how it accol]plishes

results, and particularly how it is.used in other disciplines.

P. Mathematics must have an "information and skill-

dimension. Our students should learn that mathematics

Uaat appears essenLial, inheriLed from one generation Le

the next, along with skill to apply it. This knowledge

and skill can be acquired during the process of developing

mathematical thinking. This goal permits us to cast out

of our teaching much that, while important years ago, can

no longer be considered useful.

3. Finally, it is the usefulness of subject that has

maintained it as a required school discipline. Our pupils

should develop the capacity to solve problems and to con-

struct, or nt least interpret, m:tthem'Aical models of physical,

economic, and other scientific situations.

These three general objectives can operate as a guide

for more specific ones. Various groups have attempted to
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list such goals unL "behavior outcomes" (see Bloom's

taxonomy). Here I shall mf2rely exemplify their nature.

1. To develop, so that they can be recognized, described,

and exemplified, the follol:ing concepts. Here one lists

every concept to be developed, for example, set, union,

intersection, Venn diagram, relation, function, operation, etc.

2. To develop, so that they can be applied wherever

they occur, the following skills. Then one lists in detail

every computation shill of arithmetic, every algebraic

manipulation, all geometric constructions, and so on.

3. To develop problem solving) ability of the following

type: Then one lists: to translate a word situation into

a mathematical expression, to formulate a mathematical

explanation, to construct a mathematical model, etc.

4. To develop mathematical thought. Here one lists:

to use mathematical induction, to give a proof in an

axiomatic system, to apply the rules of mathematical logic,

to apply infinite processes, etc.

5. To develop the ability to do independent study: Here

one assigns simple research topics, for example the numbers

r, e,y, or the properties of a group ; To make a project

for a mathematics fair, to do a chapter in the textbook

all on one's own.

These five behaviorol items are the most frequently

named -- concepts, skills, problem solving, mathematical

thinking, and independent study. Dowevcr, most good
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mathematics teachers add anothcr.

6. To develop, to the extent nossible, an appreciation

of the power and beauty of mathematics. This goal may be

attained by revealing the n-Iture of symmetry of trans-

formations, of structures -- group, field, vector space, --

of isomorphism, periodicity, etc.

Wbat Mathematics for General -ducation.

In the past -- geared to a nine:teenth century culture--

the school program consisted of arithmetic, algebra, and

geometry. The tremendous advances made in scientific and

mathematical knowledge and their application to almost

every aspect of modern living compel us to look anew at

the m-thematics we should be giving our students as a

part of general education. For the purpose of relating

mathematics to the above stated goals, it is advantageous

to consider among others the following topics: arithmetic,

algebra, probability and statistics, numeracy,
(1) geometry,

logic, and applications. There is no question that the

teaching of arithmetic, especially computation with whole

and rational numbers in decimal notation is an absolute

essential now. and in the futurc, for every active citizen,

far none. This is imperative in spite of the ever-increasing

number of low-cost calculators and their use. Without this

(1) "Numeracy" is a recently coined word to denote literacy
in number and numerical processes.
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knowledge of arithmetic and its uses inddoily life, including

percent, ratio and proportion, it is impossible to understand

modern society regardless of its political setup. The

acquisition of some minimum skill in computation and

application of arithmetic to the solution of everyday like

problems is essential for an individual to function in

modern society. For the great majority of students, this

must be acquired in early secondary school study.

The physical geometry of size, shape, position, and

relations of figures both plane and solid, belong in the

sane category of everyday use. The ideas ofparallelism.

perpendicularity, congruence, similarity, length, area,

volume, and distance, penetrate every description of the

world we live in, no matter how small or large. They are

indispensible for understanding and describing the real

physical structure of the world about us.

Simple algebra, involving at most the rational numbers.

occurs in the home, office, newspaper, and most occupations

"in the guise of formulas and graphs and again falls within

the conceptual knowledge all persons should have. Here it

is not special skills (as in factoring or simplifying expres-

sions) that are important, but the ability to read algebra

for the generalization or direction it igves to specific

domains of work. Conceptual algebra is more importnnt than

mere manipulation. All the above content may be considered
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a concrete foundation upon w!lich to build necessary math-

ematical content for common use. Further we must consider

mathematics as needed by a citizen of the modern world.

Probability and Statistics

The number of applications of probability and statistics

has grown greatly in the last 50 years. These applications

are found everywhere -- in industry (quality control).

commercial enterprises (decision making), agriculture (crop

experimentation), politics and society (opinion polls),

economics (cost of living indicies), etc. In the physical

and behavioral sciences, the use of probability has greatly

increased. Many countries conduct national lotteries.

In teachin science, it is no loneY sufficien't, to

develop only deterministic thinking; probabilistic thinking

which dominates the phenomena of heredtty, radio-active

processes, astrophysics, etc. deserve attention in the

school instruction of all students. In daily life one meets

a number of hazardous situations (crossing traffic. con-

tracting disease) and reports in all the news media all of

which require a minimum knowledge of probability and statis-

tics for their correct interpretation. In these media,

graphs, histograms, rates, and percentages are used in

reporting insurnnce dnta, incomce taxes, demography, traffic

accidents, economic output and the like. In particulnr,

opinion polls especinlly with regard to elections, nnd
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societal preferences, interest the entire pub3ic, which

however, has little or no knowledge of the methods used

in making, or of inferences drawn from,polls.

Misinterpretation of statistics is well known and it

is dangerous. We must teach sufficient probability and

samplin,; statistics to all students to make them literate

in the subject. This includes the concomitant knowledge

of sets, set manipulations, functions, and counting pro-

cedures, tnrtt are essential for the understanding and

applic-,tion of elementary probability theory, as well as

the graphic and fllgebraic exposition of statistics.

Numeracy.

A hundrcld years ago commercial enterprises needed

employees who could perform written and mental computation

with extraordinary speed. Today there is no need at all

for such performers -- the work is done automatically. But

what is needed, and the need is growing, are persons who

understand the theory (the algorithms) underlying a host of

new uses of numerical caculation. The flowchart, the lan-

guages of the computers, the programming of problems become

required knowledge for all persons -- partly because a

significant sector of the mass of workers will find them-

selves engaged in such work for a lifelihood, and more to

the point, it will be a part of the literacy of all people

to understand a computer-automated era of civiliation.
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In this study one will require the concomitant math-

ematical study of number systems (whole, integers, rationals

and perhaps the reals), of algorithms and iterative pro-

cesses, of approximaflons, and of matrices as they are

now, and will continue to be used in many disciplines.

Every student must know with what, and how, computers

operate, appreciate their services, and certainly understand

what they cannot do. They should know that technology is

man-made for the use of man in improving his condition of

living. It is not made to enslave man in a technocracy.

This is another ooint illustrating that mathematical

literacy is a must for mass education.

Geometry.

lt was a tenet of traditional teaching of geometry

that it taught the nature of axiomatic structure and of

logicnl demonstration. All evidence points to the fact

that these logical goals were rarely achieved, the most

that occurred was some understanding and a repetition of

so-called demonstrations of theorems. To achieve these

ideals, for those students who may need them, we have

simpler algebraic structures ns well as local-axiom systems

for study in secondary school. Rut the study of geometry

from a modern point of view, has other'soeial value.

Thednformal study of transformation (mapping geometry

133



125

explains mirror images (reflection), enlargemtmts and

shrinknges (dilat3ons). nnd mkes symmetry, which is found

in almost all organisms -- animal or plant -- stand out as

one of the most descriptive of both concrete and abstract

constructions. It is easily related to the arts -- music,

dance, painting, sculpture, architecture -- and the total

esthetic appect of life.

It is intuitive geometric knovledge rather then

rigorous axiomatic development of the subject that has

the greater social significance. Thus graphs, coordinates,

and geometric paradigms of physical, biological, and

behavioristic phenomena contribute greatly to the common

understqnding of these great fields of explanation of the

man and his world. In secondary school a small formal

axiomatic presentation has value in showing the highest

form of human reasoning in the sense that "Euclid alone

has looked on beauty bare". All future voters whould

experience some study of an axiomatic structure to know

what it is that mathematicians do to check discoveries.

Logic.

Perhaps one of the greatest contributions to misunder-

standings, and through it, failure to solve serious political

economic, and humane problems is the lack of clear, precise.

correct communication. To say wh.it we mean, and mean wh-t
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we say, and to do it without fear of misinterpretation is

a difficult task. The logic expressed by natural langw,ge

is frequently clumsy, and it can be aided by giving atten-

tion to simple mathematical logic and its application to

expression in all the other disciplines -- especially in

the use of the communication media.

The words -a. an, the, one, all, some, each,

and every-quantify our statements.

Of greater impact is the use of implications in

relation to statements Here simple truth tables give a

graphic illustration as to what is meant by implication .

bi- implication and the connectives "and", "or" and the

negation "not". Finally, simple inference schemes are all

that is required for drawing correct conclusions.

All this logic could be applied in structuring math-

ematical knowledge, but this is not the key point Logic

is of value because it can be applied to any field in which

rational thought occurs -- the many affairs in the life

of every person -- as a means of checking decisions. Thus,

it should also be a part of the instruction in the natural

language -- where at present too much attention is given to

literature and emotions and not enough to grnmmar. syntax,

and rational discourse.

It should be evident from the foregoing that we are

living in a society where mathemJticf' can no longer be

135



127

considered of value merely as a tool kit of special skills.

It hqs become a cultural subject for nll citizens who must

use this knowledge as a means of realizing what the world

is all about. If humanity is to advance to a higher state

of living on this earth, it can no longer afford to have a

huge segment of its population as scientific illiterates

left far behind a small group of elite authoritarians. The

population must be enabled to some degree, to understand

what it is th9t socdety as a whole is doing in its uncertain

quest for a better life. For the mass of students, to

learn this maLhematics will not be easy -- will not be play--

but for them it will be a hard study, one that contributes

to mental formation, but it will accomplish for them especially

a closer tie with those who create.

Applications.

All students down through the ages have demanded an

answer to "What use is there for the mathematics we learn?"

Certainly they deserve an answer to this legitimate question.

if for no other reason than to motivate the continued study

of our subject. Our teaching should usually begin with,

and culminate in, some genuine or quasi-genuine applications

to the world of reality. To this end the usual problems

on ages of persons, the number of different coins in a

collection, rowing up and down stream and so on must give

place to a more current concept of the nature of application.
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space as a means of explaining the natuTe of relativiistic

space.

Conclusions.

What mathematics then shall be studied for general

education? First, there is a fiuldmental knoydedge of

arithmetic, physical geometry, and algebraic formulation

including marices that each citizen must know and apply

more or less routinely in his every work-a-day life. Today

this knowlee must be augmented to include probability,

statistics, rr:tional discourse. numerical processes, pro-

gramming and the computer. All of this knowledge should

be presented ns a unified body of knowledge based on common

funaamental topics Underlying ull mathe,Aatics -- namely

sets, relations, functions and operations.

It is the usefulness of mathematics that has maintained

it, next to the mother tongue, as the principal discipline

of school study. The content, its organization. and methoas

of teaching must exhibit this usefulness at every possible

opportunity. For the great majority of students we must

obtain this type of mathematical literacy if we are to avoid

harmr'ul social conflict in the years aheA.. Today, a great

chasm has arisen between those few persons who know. use

and speak a scientific lam;ua6e and the vast majority who

do not undea-st?.nd m-ithematics nrIL: even fcflr it. The chas
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must be bridged. The future citizenry must come, with a

modest degree of understandin, to know how mathematics

operates in scientific explanation. A small segment of

the population has always naid of mathematics:

C'est plus belle parce-que crest inutile!

If we teach proper mathematics in an understandable

manner to the great majority they will respond by saying

of mathematics:

C'eot belle prArce-que c'est si utile!!

Vhile the substance of this chapter indicated a type

of mathematical education for the great majority of students

in our schools, it did not to set down a detailed prograM.

For this purpose we need a national committee composed of

^.tCaCherS, SL.laratifiC

and business personnel,educational psychologists, all concerned

with this great section of the school population This com-

mittee must set goals of desir-:.ble outcomes, establish a

fixed sequence (for a very mobile population), contact and

coerce publishers to produce books for teachers as well as

students, and create an evaluation procedure to measure

progress - perhaps through existing organizations. It must

be done if we are to improve the intellectural accomplishment

of our next j;cneration
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